A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition
We introduce and study the conical curvature-dimension condition, CCD(K, N), for finite graphs.We show that CCD(K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eige...
Главные авторы: | Lakzian Sajjad, Mcguirk Zachary |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
De Gruyter
2018-02-01
|
Серии: | Analysis and Geometry in Metric Spaces |
Предметы: | |
Online-ссылка: | https://doi.org/10.1515/agms-2018-0002 |
Схожие документы
-
A sufficient condition for a balanced bipartite digraph to be hamiltonian
по: Ruixia Wang
Опубликовано: (2017-11-01) -
On the domination number of $t$-constrained de Bruijn graphs
по: Tiziana Calamoneri, и др.
Опубликовано: (2022-08-01) -
A linear formulation with O(n2) variables for quadratic assignment problems with Manhattan distance matrices
по: Serigne Gueye, и др.
Опубликовано: (2015-05-01) -
Weighted Ricci curvature in Riemann-Finsler geometry
по: Zhongmin Shen
Опубликовано: (2021-09-01) -
On Randers metrics of reversible projective Ricci curvature
по: Bahman Rezaei, и др.
Опубликовано: (2017-12-01)