A Method of Discriminating Between Power Swings and Faults Based on Principal Component Analysis

Distance protection is widely applied in AC transmission systems. It may operate incorrectly under power swings, so a power swing blocking unit (PSBU) is needed to work with the distance protection relay. Such a unit should not only block the protection relay in time when a power swing occurs, but a...

Full description

Bibliographic Details
Main Authors: Hao Wang, Qi Yang, Xiaopeng Li, Wenyue Zhou
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/5/2867
Description
Summary:Distance protection is widely applied in AC transmission systems. It may operate incorrectly under power swings, so a power swing blocking unit (PSBU) is needed to work with the distance protection relay. Such a unit should not only block the protection relay in time when a power swing occurs, but also deblock the protection relay after detecting a fault during the power swing. In this paper, a method that satisfies these requirements is proposed. To discriminate between power swings and faults, the characteristics of three-phase voltage under a power swing and fault situation are used. Principal Component Analysis (PCA) is applied to extract and quantify the characteristics. To detect faults during power swings, an index is proposed, and the change rate of the index is used to form the criterion. Simulations for different kinds of power swing and fault situations are conducted based on a two-end system and a nine-bus system in PSCAD/EMTDC. The simulation test results indicate that the proposed method can block the protection relay reliably under a power swing and deblock the relay quickly after detecting a fault during the power swing. Moreover, the proposed method is compared with other methods. The comparison results show that the proposed method has an advantage in terms of response speed and is less affected by measurement noise.
ISSN:2076-3417