Gevrey Regularity of Invariant Curves of Analytic Reversible Mappings

<p/> <p>We prove the existence of a Gevrey family of invariant curves for analytic reversible mappings under weaker nondegeneracy condition. The index of the Gevrey smoothness of the family could be any number <inline-formula><graphic file="1687-1847-2010-324378-i1.gif"...

Full description

Bibliographic Details
Main Authors: Cheng Rong, Zhang Dongfeng
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2010/324378
Description
Summary:<p/> <p>We prove the existence of a Gevrey family of invariant curves for analytic reversible mappings under weaker nondegeneracy condition. The index of the Gevrey smoothness of the family could be any number <inline-formula><graphic file="1687-1847-2010-324378-i1.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1847-2010-324378-i2.gif"/></inline-formula> is the exponent in the small divisors condition and <inline-formula><graphic file="1687-1847-2010-324378-i3.gif"/></inline-formula> is the order of degeneracy of the reversible mappings. Moreover, we obtain a Gevrey normal form of the reversible mappings in a neighborhood of the union of the invariant curves.</p>
ISSN:1687-1839
1687-1847