Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.

We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddl...

Full description

Bibliographic Details
Main Author: Matteo Franca
Format: Article
Language:English
Published: University of Szeged 2013-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1880
_version_ 1797830635004362752
author Matteo Franca
author_facet Matteo Franca
author_sort Matteo Franca
collection DOAJ
description We consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(\breve{x}(t,\varepsilon,\lambda),\breve{y}(t,\varepsilon,\lambda))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(\breve{x}(t,\varepsilon,\lambda),\breve{y}(t,\varepsilon,\lambda))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.
first_indexed 2024-04-09T13:39:13Z
format Article
id doaj.art-3671e0ef93e5428f9056e0d216772bc8
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:13Z
publishDate 2013-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-3671e0ef93e5428f9056e0d216772bc82023-05-09T07:53:03ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752013-08-0120135213610.14232/ejqtde.2013.1.521880Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.Matteo Franca0Università Politecnica delle Marche, Ancona, ItalyWe consider a singularly perturbed system where the fast dynamics of the unperturbed problem exhibits a trajectory homoclinic to a critical point. We assume that the slow time system admits a unique critical point, which undergoes a bifurcation as a second parameter varies: transcritical, saddle-node, or pitchfork. We generalize to the multi-dimensional case the results obtained in a previous paper where the slow-time system is $1$-dimensional. We prove the existence of a unique trajectory $(\breve{x}(t,\varepsilon,\lambda),\breve{y}(t,\varepsilon,\lambda))$ homoclinic to a centre manifold of the slow manifold. Then we construct curves in the $2$-dimensional parameters space, dividing it in different areas where $(\breve{x}(t,\varepsilon,\lambda),\breve{y}(t,\varepsilon,\lambda))$ is either homoclinic, heteroclinic, or unbounded. We derive explicit formulas for the tangents of these curves. The results are illustrated by some examples.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1880singular perturbationhomoclinic trajectorytranscritical bifurcation central manifold
spellingShingle Matteo Franca
Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.
Electronic Journal of Qualitative Theory of Differential Equations
singular perturbation
homoclinic trajectory
transcritical bifurcation central manifold
title Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.
title_full Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.
title_fullStr Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.
title_full_unstemmed Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.
title_short Bifurcation diagrams for singularly perturbed system: the multi-dimensional case.
title_sort bifurcation diagrams for singularly perturbed system the multi dimensional case
topic singular perturbation
homoclinic trajectory
transcritical bifurcation central manifold
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1880
work_keys_str_mv AT matteofranca bifurcationdiagramsforsingularlyperturbedsystemthemultidimensionalcase