From the Jaynes–Cummings model to non-abelian gauge theories: a guided tour for the quantum engineer

The design of quantum many body systems, which have to fulfill an extensive number of constraints, appears as a formidable challenge within the field of quantum simulation. Lattice gauge theories are a particular important class of quantum systems with an extensive number of local constraints and pl...

Full description

Bibliographic Details
Main Authors: Valentin Kasper, Gediminas Juzeliūnas, Maciej Lewenstein, Fred Jendrzejewski, Erez Zohar
Format: Article
Language:English
Published: IOP Publishing 2020-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/abb961
Description
Summary:The design of quantum many body systems, which have to fulfill an extensive number of constraints, appears as a formidable challenge within the field of quantum simulation. Lattice gauge theories are a particular important class of quantum systems with an extensive number of local constraints and play a central role in high energy physics, condensed matter and quantum information. Whereas recent experimental progress points towards the feasibility of large-scale quantum simulation of abelian gauge theories, the quantum simulation of non-abelian gauge theories appears still elusive. In this paper we present minimal non-abelian lattice gauge theories, whereby we introduce the necessary formalism in well-known abelian gauge theories, such as the Jaynes–Cumming model. In particular, we show that certain minimal non-abelian lattice gauge theories can be mapped to three or four level systems, for which the design of a quantum simulator is standard with current technologies. Further we give an upper bound for the Hilbert space dimension of a one dimensional SU(2) lattice gauge theory, and argue that the implementation with current digital quantum computer appears feasible.
ISSN:1367-2630