Summary: | Abstract We study the problem of identifying relevant genes in a co-expression network using a (cooperative) game theoretic approach. The Shapley value of a cooperative game is used to asses the relevance of each gene in interaction with the others, and to stress the role of nodes in the periphery of a co-expression network for the regulation of complex biological pathways of interest. An application of the method to the analysis of gene expression data from microarrays is presented, as well as a comparison with classical centrality indices. Finally, making further assumptions about the a priori importance of genes, we combine the game theoretic model with other techniques from cluster analysis.
|