Static charged Gauss-Bonnet black holes cannot be overcharged by the new version of gedanken experiments

Based on the new version of the gedanken experiments proposed by Sorce and Wald, we examine the weak cosmic censorship conjecture (WCCC) under the spherically charged infalling matter collision process in the static charged Gauss-Bonnet black holes. After considering the null energy condition and as...

Full description

Bibliographic Details
Main Author: Jie Jiang
Format: Article
Language:English
Published: Elsevier 2020-05-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269320301696
Description
Summary:Based on the new version of the gedanken experiments proposed by Sorce and Wald, we examine the weak cosmic censorship conjecture (WCCC) under the spherically charged infalling matter collision process in the static charged Gauss-Bonnet black holes. After considering the null energy condition and assuming the stability condition, we derive the perturbation inequality of the matter source. As a result, we find that the static charged Gauss-Bonnet black holes cannot be overcharged under the second-order approximation of the perturbation when the null energy condition is taken into account, although they can be destroyed in the old version of gedanken experiments. Our result shows that the WCCC holds for the above collision process in the Einstein-Maxwell-Gauss-Bonnet gravity and indicates that WCCC may also be valid in the higher curvature gravitational theories.
ISSN:0370-2693