A Framework for Cloud-Based Spatially-Explicit Uncertainty and Sensitivity Analysis in Spatial Multi-Criteria Models
Global sensitivity analysis, like variance-based methods for massive raster datasets, is especially computationally costly and memory-intensive, limiting its applicability for commodity cluster computing. The computational effort depends mainly on the number of model runs, the spatial, spectral, and...
Autors principals: | , , , , |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
MDPI AG
2021-04-01
|
Col·lecció: | ISPRS International Journal of Geo-Information |
Matèries: | |
Accés en línia: | https://www.mdpi.com/2220-9964/10/4/244 |