A Framework for Cloud-Based Spatially-Explicit Uncertainty and Sensitivity Analysis in Spatial Multi-Criteria Models

Global sensitivity analysis, like variance-based methods for massive raster datasets, is especially computationally costly and memory-intensive, limiting its applicability for commodity cluster computing. The computational effort depends mainly on the number of model runs, the spatial, spectral, and...

Descripció completa

Dades bibliogràfiques
Autors principals: Christoph Erlacher, Karl-Heinrich Anders, Piotr Jankowski, Gernot Paulus, Thomas Blaschke
Format: Article
Idioma:English
Publicat: MDPI AG 2021-04-01
Col·lecció:ISPRS International Journal of Geo-Information
Matèries:
Accés en línia:https://www.mdpi.com/2220-9964/10/4/244