A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold

Satellite remote sensing plays an important role in wildfire detection. Methods using the brightness and temperature difference of remote sensing images to determine if a wildfire has occurred are one of the main research directions of forest fire monitoring. However, common wildfire detection algor...

Full description

Bibliographic Details
Main Authors: Yunhong Ding, Mingyang Wang, Yujia Fu, Lin Zhang, Xianjie Wang
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/3/477
Description
Summary:Satellite remote sensing plays an important role in wildfire detection. Methods using the brightness and temperature difference of remote sensing images to determine if a wildfire has occurred are one of the main research directions of forest fire monitoring. However, common wildfire detection algorithms are mainly based on a fixed brightness temperature threshold to distinguish wildfire pixels and non-wildfire pixels, which reduces the applicability of the algorithm in different space–time regions. This paper presents an adaptive wildfire detection algorithm, DBTDW, based on a dynamic brightness temperature threshold. First, a regression dataset, MODIS_DT_Fire, was constructed based on moderate resolution imaging spectroradiometry (MODIS) to determine the wildfire brightness temperature threshold. Then, based on the meteorological information, normalized difference vegetation index (NDVI) information, and elevation information provided by the dataset, the DBTDW algorithm was used to calculate and obtain the minimum brightness temperature threshold of the burning area by using the Planck algorithm and Otsu algorithm. Finally, six regression models were trained to establish the correlation between factors and the dynamic brightness temperature threshold of wildfire. The root-mean-square error (RMSE) and mean absolute error (MAE) were used to evaluate the regression performance. The results show that under the XGBoost model, the DBTDW algorithm has the best prediction effect on the dynamic brightness temperature threshold of wildfire (leave-one-out method: RMSE/MAE = 0.0730). Compared with the method based on a fixed brightness temperature threshold, the method proposed in this paper to adaptively determine the brightness temperature threshold of wildfire has higher universality, which will help improve the effectiveness of satellite remote fire detection.
ISSN:1999-4907