Development of Transmission Systems for Parallel Hybrid Electric Vehicles

This study investigated the matching designs between a power integration mechanism (PIM) and transmission system for single-motor parallel hybrid electric vehicles. The optimal matching design may lead to optimal efficiency and performance in parallel hybrid vehicles. The Simulink/Simscape environme...

Full description

Bibliographic Details
Main Authors: Po-Tuan Chen, Ping-Hao Pai, Cheng-Jung Yang, K. David Huang
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/8/1538
Description
Summary:This study investigated the matching designs between a power integration mechanism (PIM) and transmission system for single-motor parallel hybrid electric vehicles. The optimal matching design may lead to optimal efficiency and performance in parallel hybrid vehicles. The Simulink/Simscape environment is used to model the powertrain system of parallel hybrid electric vehicles, which the characteristics of the PIM, location of the gearbox at the driveline, and design of the gear ratio of a gearbox influenced. The matching design principles for torque-coupled&#8211;type PIM (TC-PIM) parameters and the location of the gearbox are based on the speed range of the electric motor and the internal combustion engine. The parameters of the TC-PIM (i.e., <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> </inline-formula>) are based on the <inline-formula> <math display="inline"> <semantics> <mi>k</mi> </semantics> </math> </inline-formula> ratio theory. Numerical simulations of an extra-urban driving cycle and acceleration tests reveal that a higher <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> has greater improved power-assist ability under a pre-transmission architecture. For example, a <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> of 1.6 can improve the power-assist ability by 8.5% when compared with a <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> of 1. By using an appropriate gear ratio and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, the top speed of a hybrid electric vehicle is enhanced by 9.3%.
ISSN:2076-3417