Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods

The present work focuses on the prediction of the hot deformation behavior of thermo-mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered focus on a novel hot forming process at different tool temperatures ranging from <inline-formula><math xmlns="...

Full description

Bibliographic Details
Main Authors: Jens Decke, Anna Engelhardt, Lukas Rauch, Sebastian Degener, Seyed Vahid Sajadifar, Emad Scharifi, Kurt Steinhoff, Thomas Niendorf, Bernhard Sick
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/9/1281
Description
Summary:The present work focuses on the prediction of the hot deformation behavior of thermo-mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered focus on a novel hot forming process at different tool temperatures ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>350</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to set different cooling rates after solution heat-treatment. Isothermal uniaxial tensile tests in the temperature range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>200</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>400</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C and at strain rates ranging from 0.001 s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to 0.1 s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> were carried out on four different material conditions. The present paper mainly focuses on a comparative study of modeling techniques based on Machine Learning (ML) and the Zerilli–Armstrong model (Z–A) as reference. Related work focuses on predicting single data points of the curves that the model was trained on. Due to the way data were split with respect to training and testing data, it is possible to predict entire stress–strain curves. The model allows to decrease the number of required laboratory experiments, eventually saving costs and time in future experiments. While all investigated ML methods showed a higher performance than the Z–A model, the extreme Gradient Boosting model (XGB) showed superior results, i.e., the highest error reduction of 91% with respect to the Mean Squared Error.
ISSN:2073-4352