Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods

The present work focuses on the prediction of the hot deformation behavior of thermo-mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered focus on a novel hot forming process at different tool temperatures ranging from <inline-formula><math xmlns="...

Full description

Bibliographic Details
Main Authors: Jens Decke, Anna Engelhardt, Lukas Rauch, Sebastian Degener, Seyed Vahid Sajadifar, Emad Scharifi, Kurt Steinhoff, Thomas Niendorf, Bernhard Sick
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/9/1281
_version_ 1797489651872694272
author Jens Decke
Anna Engelhardt
Lukas Rauch
Sebastian Degener
Seyed Vahid Sajadifar
Emad Scharifi
Kurt Steinhoff
Thomas Niendorf
Bernhard Sick
author_facet Jens Decke
Anna Engelhardt
Lukas Rauch
Sebastian Degener
Seyed Vahid Sajadifar
Emad Scharifi
Kurt Steinhoff
Thomas Niendorf
Bernhard Sick
author_sort Jens Decke
collection DOAJ
description The present work focuses on the prediction of the hot deformation behavior of thermo-mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered focus on a novel hot forming process at different tool temperatures ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>350</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to set different cooling rates after solution heat-treatment. Isothermal uniaxial tensile tests in the temperature range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>200</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>400</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C and at strain rates ranging from 0.001 s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to 0.1 s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> were carried out on four different material conditions. The present paper mainly focuses on a comparative study of modeling techniques based on Machine Learning (ML) and the Zerilli–Armstrong model (Z–A) as reference. Related work focuses on predicting single data points of the curves that the model was trained on. Due to the way data were split with respect to training and testing data, it is possible to predict entire stress–strain curves. The model allows to decrease the number of required laboratory experiments, eventually saving costs and time in future experiments. While all investigated ML methods showed a higher performance than the Z–A model, the extreme Gradient Boosting model (XGB) showed superior results, i.e., the highest error reduction of 91% with respect to the Mean Squared Error.
first_indexed 2024-03-10T00:19:39Z
format Article
id doaj.art-36a7d44d8f854df386e460ea7d5c6ee4
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T00:19:39Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-36a7d44d8f854df386e460ea7d5c6ee42023-11-23T15:44:28ZengMDPI AGCrystals2073-43522022-09-01129128110.3390/cryst12091281Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning MethodsJens Decke0Anna Engelhardt1Lukas Rauch2Sebastian Degener3Seyed Vahid Sajadifar4Emad Scharifi5Kurt Steinhoff6Thomas Niendorf7Bernhard Sick8Intelligent Embedded Systems, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyMetallic Materials, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyIntelligent Embedded Systems, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyMetallic Materials, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyMetallic Materials, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyMetal Forming Technology, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyMetal Forming Technology, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyMetallic Materials, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyIntelligent Embedded Systems, Universität Kassel, Mönchebergstraße 3, 34125 Kassel, GermanyThe present work focuses on the prediction of the hot deformation behavior of thermo-mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered focus on a novel hot forming process at different tool temperatures ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>350</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to set different cooling rates after solution heat-treatment. Isothermal uniaxial tensile tests in the temperature range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>200</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>400</mn><msup><mspace width="3.33333pt"></mspace><mo>∘</mo></msup></mrow></semantics></math></inline-formula>C and at strain rates ranging from 0.001 s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> to 0.1 s<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> were carried out on four different material conditions. The present paper mainly focuses on a comparative study of modeling techniques based on Machine Learning (ML) and the Zerilli–Armstrong model (Z–A) as reference. Related work focuses on predicting single data points of the curves that the model was trained on. Due to the way data were split with respect to training and testing data, it is possible to predict entire stress–strain curves. The model allows to decrease the number of required laboratory experiments, eventually saving costs and time in future experiments. While all investigated ML methods showed a higher performance than the Z–A model, the extreme Gradient Boosting model (XGB) showed superior results, i.e., the highest error reduction of 91% with respect to the Mean Squared Error.https://www.mdpi.com/2073-4352/12/9/1281machine learningeXtreme Gradient BoostingZerilli–Armstrongflow stressAA7075
spellingShingle Jens Decke
Anna Engelhardt
Lukas Rauch
Sebastian Degener
Seyed Vahid Sajadifar
Emad Scharifi
Kurt Steinhoff
Thomas Niendorf
Bernhard Sick
Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
Crystals
machine learning
eXtreme Gradient Boosting
Zerilli–Armstrong
flow stress
AA7075
title Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
title_full Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
title_fullStr Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
title_full_unstemmed Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
title_short Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods
title_sort predicting flow stress behavior of an aa7075 alloy using machine learning methods
topic machine learning
eXtreme Gradient Boosting
Zerilli–Armstrong
flow stress
AA7075
url https://www.mdpi.com/2073-4352/12/9/1281
work_keys_str_mv AT jensdecke predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT annaengelhardt predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT lukasrauch predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT sebastiandegener predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT seyedvahidsajadifar predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT emadscharifi predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT kurtsteinhoff predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT thomasniendorf predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods
AT bernhardsick predictingflowstressbehaviorofanaa7075alloyusingmachinelearningmethods