The closure temperature(s) of zircon Raman dating

<p>Zircon Raman dating based on irradiation damage is a debated concept but not an established geo-/thermochronological method. One issue is the temperature range of radiation-damage annealing over geological timescales. We conducted isochronal and isothermal annealing experiments on radiatio...

Full description

Bibliographic Details
Main Authors: B. Härtel, R. Jonckheere, B. Wauschkuhn, L. Ratschbacher
Format: Article
Language:English
Published: Copernicus Publications 2021-05-01
Series:Geochronology
Online Access:https://gchron.copernicus.org/articles/3/259/2021/gchron-3-259-2021.pdf
_version_ 1797230176554188800
author B. Härtel
R. Jonckheere
B. Wauschkuhn
L. Ratschbacher
author_facet B. Härtel
R. Jonckheere
B. Wauschkuhn
L. Ratschbacher
author_sort B. Härtel
collection DOAJ
description <p>Zircon Raman dating based on irradiation damage is a debated concept but not an established geo-/thermochronological method. One issue is the temperature range of radiation-damage annealing over geological timescales. We conducted isochronal and isothermal annealing experiments on radiation-damaged zircons between 500 and 1000 <span class="inline-formula"><sup>∘</sup></span>C for durations between 10 min and 5 d to describe the annealing kinetics. We measured the widths (<span class="inline-formula">Γ</span>) and positions (<span class="inline-formula"><i>ω</i></span>) of the <span class="inline-formula"><i>ν</i><sub>1</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), <span class="inline-formula"><i>ν</i><sub>2</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), and <span class="inline-formula"><i>ν</i><sub>3</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>) internal Raman bands, and the external rotation Raman band at <span class="inline-formula">∼974</span>, 438, 1008, and 356 cm<span class="inline-formula"><sup>−1</sup></span> after each annealing step. We fitted a Johnson–Mehl–Avrami–Kolmogorov and a distributed activation energy model to the fractional annealing data, calculated from the widths of the <span class="inline-formula"><i>ν</i><sub>2</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), <span class="inline-formula"><i>ν</i><sub>3</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), and external rotation bands. From the kinetic models, we determined closure temperatures <span class="inline-formula"><i>T</i><sub>c</sub></span> for damage accumulation for each Raman band. <span class="inline-formula"><i>T</i><sub>c</sub></span> ranges from 330 to 370 <span class="inline-formula"><sup>∘</sup></span>C for the internal <span class="inline-formula"><i>ν</i><sub>2</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>) and <span class="inline-formula"><i>ν</i><sub>3</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>) bands; the external rotation band is more sensitive to thermal annealing (<span class="inline-formula"><i>T</i><sub>c</sub>∼260</span> to 310 <span class="inline-formula"><sup>∘</sup></span>C). Our estimates are in general agreement with previous ones, but more geological evidence is needed to validate the results. The <span class="inline-formula"><i>T</i><sub>c</sub></span> difference for the different Raman bands offers the prospect of a multi-closure-temperature zircon Raman thermochronometer.</p>
first_indexed 2024-04-24T15:24:20Z
format Article
id doaj.art-36b2a485ef8d4d1c8ce624a3860e9707
institution Directory Open Access Journal
issn 2628-3719
language English
last_indexed 2024-04-24T15:24:20Z
publishDate 2021-05-01
publisher Copernicus Publications
record_format Article
series Geochronology
spelling doaj.art-36b2a485ef8d4d1c8ce624a3860e97072024-04-02T06:48:41ZengCopernicus PublicationsGeochronology2628-37192021-05-01325927210.5194/gchron-3-259-2021The closure temperature(s) of zircon Raman datingB. HärtelR. JonckheereB. WauschkuhnL. Ratschbacher<p>Zircon Raman dating based on irradiation damage is a debated concept but not an established geo-/thermochronological method. One issue is the temperature range of radiation-damage annealing over geological timescales. We conducted isochronal and isothermal annealing experiments on radiation-damaged zircons between 500 and 1000 <span class="inline-formula"><sup>∘</sup></span>C for durations between 10 min and 5 d to describe the annealing kinetics. We measured the widths (<span class="inline-formula">Γ</span>) and positions (<span class="inline-formula"><i>ω</i></span>) of the <span class="inline-formula"><i>ν</i><sub>1</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), <span class="inline-formula"><i>ν</i><sub>2</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), and <span class="inline-formula"><i>ν</i><sub>3</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>) internal Raman bands, and the external rotation Raman band at <span class="inline-formula">∼974</span>, 438, 1008, and 356 cm<span class="inline-formula"><sup>−1</sup></span> after each annealing step. We fitted a Johnson–Mehl–Avrami–Kolmogorov and a distributed activation energy model to the fractional annealing data, calculated from the widths of the <span class="inline-formula"><i>ν</i><sub>2</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), <span class="inline-formula"><i>ν</i><sub>3</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>), and external rotation bands. From the kinetic models, we determined closure temperatures <span class="inline-formula"><i>T</i><sub>c</sub></span> for damage accumulation for each Raman band. <span class="inline-formula"><i>T</i><sub>c</sub></span> ranges from 330 to 370 <span class="inline-formula"><sup>∘</sup></span>C for the internal <span class="inline-formula"><i>ν</i><sub>2</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>) and <span class="inline-formula"><i>ν</i><sub>3</sub></span>(SiO<span class="inline-formula"><sub>4</sub></span>) bands; the external rotation band is more sensitive to thermal annealing (<span class="inline-formula"><i>T</i><sub>c</sub>∼260</span> to 310 <span class="inline-formula"><sup>∘</sup></span>C). Our estimates are in general agreement with previous ones, but more geological evidence is needed to validate the results. The <span class="inline-formula"><i>T</i><sub>c</sub></span> difference for the different Raman bands offers the prospect of a multi-closure-temperature zircon Raman thermochronometer.</p>https://gchron.copernicus.org/articles/3/259/2021/gchron-3-259-2021.pdf
spellingShingle B. Härtel
R. Jonckheere
B. Wauschkuhn
L. Ratschbacher
The closure temperature(s) of zircon Raman dating
Geochronology
title The closure temperature(s) of zircon Raman dating
title_full The closure temperature(s) of zircon Raman dating
title_fullStr The closure temperature(s) of zircon Raman dating
title_full_unstemmed The closure temperature(s) of zircon Raman dating
title_short The closure temperature(s) of zircon Raman dating
title_sort closure temperature s of zircon raman dating
url https://gchron.copernicus.org/articles/3/259/2021/gchron-3-259-2021.pdf
work_keys_str_mv AT bhartel theclosuretemperaturesofzirconramandating
AT rjonckheere theclosuretemperaturesofzirconramandating
AT bwauschkuhn theclosuretemperaturesofzirconramandating
AT lratschbacher theclosuretemperaturesofzirconramandating
AT bhartel closuretemperaturesofzirconramandating
AT rjonckheere closuretemperaturesofzirconramandating
AT bwauschkuhn closuretemperaturesofzirconramandating
AT lratschbacher closuretemperaturesofzirconramandating