Simulation of Titicaca Lake Water Level Fluctuations Using Hybrid Machine Learning Technique Integrated with Grey Wolf Optimizer Algorithm

Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. Due to the existence...

Full description

Bibliographic Details
Main Authors: Babak Mohammadi, Yiqing Guan, Pouya Aghelpour, Samad Emamgholizadeh, Ramiro Pillco Zolá, Danrong Zhang
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/11/3015
Description
Summary:Lakes have an important role in storing water for drinking, producing hydroelectric power, and environmental, agricultural, and industrial uses. In order to optimize the use of lakes, precise prediction of the lake water level (LWL) is a main issue in water resources management. Due to the existence of nonlinear relations, uncertainty, and characteristics of the time series variables, the exact prediction of the lake water level is difficult. In this study the hybrid support vector regression (SVR) and the grey wolf algorithm (GWO) are used to predict lake water level fluctuations. Also, three types of data preprocessing methods, namely Principal component analysis, Random forest, and Relief algorithm were used for finding the best input variables for prediction LWL by the SVR and SVR-GWO models. Before the LWL simulation on monthly time step using the hybrid model, an evolutionary approach based on different monthly lags was conducted for determining the best mask of the input variables. Results showed that based on the random forest method, the best scenario of the inputs was <inline-formula><math display="inline"><semantics><mrow><msub><mi>X</mi><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mo> </mo><msub><mi>X</mi><mrow><mi>t</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>,</mo><mo> </mo><msub><mi>X</mi><mrow><mi>t</mi><mo>−</mo><mn>3</mn></mrow></msub><mo>,</mo><mo> </mo><msub><mi>X</mi><mrow><mi>t</mi><mo>−</mo><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula> for the SVR-GWO model. Also, the performance of the SVR-GWO model indicated that it could simulate the LWL with acceptable accuracy (with RMSE = 0.08 m, MAE = 0.06 m, and R<sup>2</sup> = 0.96).
ISSN:2073-4441