On the insolubility of one drawing problem II

It is shown in the article that, in general, it is not possible to draw a triangle using a compass and a straightedge given an angle and a bisector and a median drawn from the vertices of another different angles. It is shown in which particular cases a triangle can be drawn.

Bibliographic Details
Main Authors: Jevgenijus Kirjackis, Edmundas Mazėtis, Grigorijus Melničenko
Format: Article
Language:English
Published: Vilnius University Press 2016-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.journals.vu.lt/LMR/article/view/17742
_version_ 1818340230213664768
author Jevgenijus Kirjackis
Edmundas Mazėtis
Grigorijus Melničenko
author_facet Jevgenijus Kirjackis
Edmundas Mazėtis
Grigorijus Melničenko
author_sort Jevgenijus Kirjackis
collection DOAJ
description It is shown in the article that, in general, it is not possible to draw a triangle using a compass and a straightedge given an angle and a bisector and a median drawn from the vertices of another different angles. It is shown in which particular cases a triangle can be drawn.
first_indexed 2024-12-13T15:39:36Z
format Article
id doaj.art-36bfb4dfedd9426fb62eb3bf7cc11bba
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-12-13T15:39:36Z
publishDate 2016-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-36bfb4dfedd9426fb62eb3bf7cc11bba2022-12-21T23:39:51ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2016-12-0157B10.15388/LMR.B.2016.16On the insolubility of one drawing problem IIJevgenijus Kirjackis0Edmundas Mazėtis1Grigorijus Melničenko2Vilniaus Gedimino technikos universitetasVilniaus universitetasLietuvos edukologijos universitetasIt is shown in the article that, in general, it is not possible to draw a triangle using a compass and a straightedge given an angle and a bisector and a median drawn from the vertices of another different angles. It is shown in which particular cases a triangle can be drawn.https://www.journals.vu.lt/LMR/article/view/17742triangemedianbisectordrawing with compass and straightedgecubic equation
spellingShingle Jevgenijus Kirjackis
Edmundas Mazėtis
Grigorijus Melničenko
On the insolubility of one drawing problem II
Lietuvos Matematikos Rinkinys
triange
median
bisector
drawing with compass and straightedge
cubic equation
title On the insolubility of one drawing problem II
title_full On the insolubility of one drawing problem II
title_fullStr On the insolubility of one drawing problem II
title_full_unstemmed On the insolubility of one drawing problem II
title_short On the insolubility of one drawing problem II
title_sort on the insolubility of one drawing problem ii
topic triange
median
bisector
drawing with compass and straightedge
cubic equation
url https://www.journals.vu.lt/LMR/article/view/17742
work_keys_str_mv AT jevgenijuskirjackis ontheinsolubilityofonedrawingproblemii
AT edmundasmazetis ontheinsolubilityofonedrawingproblemii
AT grigorijusmelnicenko ontheinsolubilityofonedrawingproblemii