Summary: | Accurate positioning of an airborne heavy-duty mechanical arm in coal mine, such as a roof bolter, is important for the efficiency and safety of coal mining. Its positioning accuracy is affected not only by geometric errors but also by nongeometric errors such as link and joint compliance. In this paper, a novel calibration method based on error limited genetic algorithm (ELGA) and regularized extreme learning machine (RELM) is proposed to improve the positioning accuracy of a roof bolter. To achieve the improvement, the ELGA is firstly implemented to identify the geometric parameters of the roof bolter’s kinematics model. Then, the residual positioning errors caused by nongeometric facts are compensated with the regularized extreme learning machine (RELM) network. Experiments were carried out to validate the proposed calibration method. The experimental results show that the root mean square error (<i>RMSE</i>) and the mean absolute error (MAE) between the actual mast end position and the nominal mast end position are reduced by more than 78.23%. It also shows the maximum absolute error (MAXE) between the actual mast end position and the nominal mast end position is reduced by more than 58.72% in the three directions of Cartesian coordinate system.
|