A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization

Chimeric antigen receptor (CAR) T cell performance against solid tumors in mouse models and clinical trials is often less effective than predicted by CAR construct selection in two-dimensional (2D) cocultures. Three-dimensional (3D) solid tumor architecture is likely to be crucial for CAR T cell eff...

Full description

Bibliographic Details
Main Authors: Laura Grunewald, Tobias Lam, Lena Andersch, Anika Klaus, Silke Schwiebert, Annika Winkler, Anton Gauert, Anja I. Heeren-Hagemann, Kathy Astrahantseff, Filippos Klironomos, Alexander Thomas, Hedwig E. Deubzer, Anton G. Henssen, Angelika Eggert, Johannes H. Schulte, Kathleen Anders, Lutz Kloke, Annette Künkele
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-06-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2021.689697/full
_version_ 1818936404009287680
author Laura Grunewald
Laura Grunewald
Tobias Lam
Tobias Lam
Lena Andersch
Anika Klaus
Silke Schwiebert
Annika Winkler
Anton Gauert
Anja I. Heeren-Hagemann
Kathy Astrahantseff
Filippos Klironomos
Alexander Thomas
Alexander Thomas
Hedwig E. Deubzer
Hedwig E. Deubzer
Hedwig E. Deubzer
Hedwig E. Deubzer
Anton G. Henssen
Anton G. Henssen
Angelika Eggert
Angelika Eggert
Angelika Eggert
Angelika Eggert
Johannes H. Schulte
Johannes H. Schulte
Johannes H. Schulte
Kathleen Anders
Kathleen Anders
Lutz Kloke
Lutz Kloke
Annette Künkele
Annette Künkele
Annette Künkele
Annette Künkele
author_facet Laura Grunewald
Laura Grunewald
Tobias Lam
Tobias Lam
Lena Andersch
Anika Klaus
Silke Schwiebert
Annika Winkler
Anton Gauert
Anja I. Heeren-Hagemann
Kathy Astrahantseff
Filippos Klironomos
Alexander Thomas
Alexander Thomas
Hedwig E. Deubzer
Hedwig E. Deubzer
Hedwig E. Deubzer
Hedwig E. Deubzer
Anton G. Henssen
Anton G. Henssen
Angelika Eggert
Angelika Eggert
Angelika Eggert
Angelika Eggert
Johannes H. Schulte
Johannes H. Schulte
Johannes H. Schulte
Kathleen Anders
Kathleen Anders
Lutz Kloke
Lutz Kloke
Annette Künkele
Annette Künkele
Annette Künkele
Annette Künkele
author_sort Laura Grunewald
collection DOAJ
description Chimeric antigen receptor (CAR) T cell performance against solid tumors in mouse models and clinical trials is often less effective than predicted by CAR construct selection in two-dimensional (2D) cocultures. Three-dimensional (3D) solid tumor architecture is likely to be crucial for CAR T cell efficacy. We used a three-dimensional (3D) bioprinting approach for large-scale generation of highly reproducible 3D human tumor models for the test case, neuroblastoma, and compared these to 2D cocultures for evaluation of CAR T cells targeting the L1 cell adhesion molecule, L1CAM. CAR T cells infiltrated the model, and both CAR T and tumor cells were viable for long-term experiments and could be isolated as single-cell suspensions for whole-cell assays quantifying CAR T cell activation, effector function and tumor cell cytotoxicity. L1CAM-specific CAR T cell activation by neuroblastoma cells was stronger in the 3D model than in 2D cocultures, but neuroblastoma cell lysis was lower. The bioprinted 3D neuroblastoma model is highly reproducible and allows detection and quantification of CAR T cell tumor infiltration, representing a superior in vitro analysis tool for preclinical CAR T cell characterization likely to better select CAR T cells for in vivo performance than 2D cocultures.
first_indexed 2024-12-20T05:35:31Z
format Article
id doaj.art-36d3f87310c541579111c11eb4745bb7
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-12-20T05:35:31Z
publishDate 2021-06-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-36d3f87310c541579111c11eb4745bb72022-12-21T19:51:38ZengFrontiers Media S.A.Frontiers in Immunology1664-32242021-06-011210.3389/fimmu.2021.689697689697A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy OptimizationLaura Grunewald0Laura Grunewald1Tobias Lam2Tobias Lam3Lena Andersch4Anika Klaus5Silke Schwiebert6Annika Winkler7Anton Gauert8Anja I. Heeren-Hagemann9Kathy Astrahantseff10Filippos Klironomos11Alexander Thomas12Alexander Thomas13Hedwig E. Deubzer14Hedwig E. Deubzer15Hedwig E. Deubzer16Hedwig E. Deubzer17Anton G. Henssen18Anton G. Henssen19Angelika Eggert20Angelika Eggert21Angelika Eggert22Angelika Eggert23Johannes H. Schulte24Johannes H. Schulte25Johannes H. Schulte26Kathleen Anders27Kathleen Anders28Lutz Kloke29Lutz Kloke30Annette Künkele31Annette Künkele32Annette Künkele33Annette Künkele34Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyFreie Universität Berlin, Berlin, GermanyTechnische Universität Berlin, Berlin, GermanyCellbricks GmbH Berlin, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyTechnische Universität Berlin, Berlin, GermanyCellbricks GmbH Berlin, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyNeuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, GermanyGerman Cancer Consortium (DKTK), Heidelberg, GermanyGerman Cancer Research Center (DKFZ), Heidelberg, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyGerman Cancer Consortium (DKTK), Heidelberg, GermanyGerman Cancer Research Center (DKFZ), Heidelberg, GermanyBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyGerman Cancer Consortium (DKTK), Heidelberg, GermanyGerman Cancer Research Center (DKFZ), Heidelberg, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyGerman Cancer Research Center (DKFZ), Heidelberg, GermanyTechnische Universität Berlin, Berlin, GermanyCellbricks GmbH Berlin, Berlin, GermanyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology and Hematology, Berlin, GermanyGerman Cancer Consortium (DKTK), Heidelberg, GermanyGerman Cancer Research Center (DKFZ), Heidelberg, GermanyBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, GermanyChimeric antigen receptor (CAR) T cell performance against solid tumors in mouse models and clinical trials is often less effective than predicted by CAR construct selection in two-dimensional (2D) cocultures. Three-dimensional (3D) solid tumor architecture is likely to be crucial for CAR T cell efficacy. We used a three-dimensional (3D) bioprinting approach for large-scale generation of highly reproducible 3D human tumor models for the test case, neuroblastoma, and compared these to 2D cocultures for evaluation of CAR T cells targeting the L1 cell adhesion molecule, L1CAM. CAR T cells infiltrated the model, and both CAR T and tumor cells were viable for long-term experiments and could be isolated as single-cell suspensions for whole-cell assays quantifying CAR T cell activation, effector function and tumor cell cytotoxicity. L1CAM-specific CAR T cell activation by neuroblastoma cells was stronger in the 3D model than in 2D cocultures, but neuroblastoma cell lysis was lower. The bioprinted 3D neuroblastoma model is highly reproducible and allows detection and quantification of CAR T cell tumor infiltration, representing a superior in vitro analysis tool for preclinical CAR T cell characterization likely to better select CAR T cells for in vivo performance than 2D cocultures.https://www.frontiersin.org/articles/10.3389/fimmu.2021.689697/fullCAR T cellsneuroblastomaT cell infiltration3D tumor modelbioprint technology
spellingShingle Laura Grunewald
Laura Grunewald
Tobias Lam
Tobias Lam
Lena Andersch
Anika Klaus
Silke Schwiebert
Annika Winkler
Anton Gauert
Anja I. Heeren-Hagemann
Kathy Astrahantseff
Filippos Klironomos
Alexander Thomas
Alexander Thomas
Hedwig E. Deubzer
Hedwig E. Deubzer
Hedwig E. Deubzer
Hedwig E. Deubzer
Anton G. Henssen
Anton G. Henssen
Angelika Eggert
Angelika Eggert
Angelika Eggert
Angelika Eggert
Johannes H. Schulte
Johannes H. Schulte
Johannes H. Schulte
Kathleen Anders
Kathleen Anders
Lutz Kloke
Lutz Kloke
Annette Künkele
Annette Künkele
Annette Künkele
Annette Künkele
A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization
Frontiers in Immunology
CAR T cells
neuroblastoma
T cell infiltration
3D tumor model
bioprint technology
title A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization
title_full A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization
title_fullStr A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization
title_full_unstemmed A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization
title_short A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization
title_sort reproducible bioprinted 3d tumor model serves as a preselection tool for car t cell therapy optimization
topic CAR T cells
neuroblastoma
T cell infiltration
3D tumor model
bioprint technology
url https://www.frontiersin.org/articles/10.3389/fimmu.2021.689697/full
work_keys_str_mv AT lauragrunewald areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lauragrunewald areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT tobiaslam areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT tobiaslam areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lenaandersch areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT anikaklaus areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT silkeschwiebert areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annikawinkler areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT antongauert areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT anjaiheerenhagemann areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT kathyastrahantseff areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT filipposklironomos areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT alexanderthomas areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT alexanderthomas areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT antonghenssen areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT antonghenssen areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT johanneshschulte areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT johanneshschulte areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT johanneshschulte areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT kathleenanders areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT kathleenanders areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lutzkloke areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lutzkloke areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele areproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lauragrunewald reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lauragrunewald reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT tobiaslam reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT tobiaslam reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lenaandersch reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT anikaklaus reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT silkeschwiebert reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annikawinkler reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT antongauert reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT anjaiheerenhagemann reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT kathyastrahantseff reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT filipposklironomos reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT alexanderthomas reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT alexanderthomas reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT hedwigedeubzer reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT antonghenssen reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT antonghenssen reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT angelikaeggert reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT johanneshschulte reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT johanneshschulte reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT johanneshschulte reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT kathleenanders reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT kathleenanders reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lutzkloke reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT lutzkloke reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization
AT annettekunkele reproduciblebioprinted3dtumormodelservesasapreselectiontoolforcartcelltherapyoptimization