Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae
Unacceptable sagittal alignment and cement leakage are major concerns of percutaneous vertebroplasty when treating patients with painful vertebral osteoporotic compression fractures. To maintain the restored vertebral height and reduce the reliance on cement as the major stabilizer, an expandable ve...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/19/10165 |
_version_ | 1797480397853949952 |
---|---|
author | Ming-Kai Hsieh Wen-Jer Chen Mel S. Lee Sheng-Yu Lin Mu-Yi Liu De-Mei Lee Ching-Lung Tai |
author_facet | Ming-Kai Hsieh Wen-Jer Chen Mel S. Lee Sheng-Yu Lin Mu-Yi Liu De-Mei Lee Ching-Lung Tai |
author_sort | Ming-Kai Hsieh |
collection | DOAJ |
description | Unacceptable sagittal alignment and cement leakage are major concerns of percutaneous vertebroplasty when treating patients with painful vertebral osteoporotic compression fractures. To maintain the restored vertebral height and reduce the reliance on cement as the major stabilizer, an expandable vertebral augment system (EVA<sup>®</sup>) made of titanium alloy consisting of a rigid tube encased by a barrel with an anterior expansion mechanism was developed. The aim of the current study was to determine whether this novel design is as effective as existing procedures in terms of height restoration and biomechanical performance. Eight osteoporotic vertebrae (T12-L3) confirmed by dual-energy X-ray absorptiometry from two fresh-frozen human cadavers (70- and 72-year-old females) were used. Twenty-five percent reduced anterior wedge vertebral compression fractures were created using a material testing machine. Four randomized specimens were augmented with EVA<sup>®</sup> (Chang Gu Biotechnology Co. Ltd., Taipei city, Taiwan), and another four randomized specimens were augmented with OsseoFix<sup>®</sup> (AlphaTec Spine Inc., Carlsbad, CA, USA). The implant size and cement volume were controlled. The anterior vertebral body height (VBH) ratio and pre/postaugmented ultimate strength and stiffness were measured and compared. The mean anterior VBH restoration ratio was 8.54% in the EVA<sup>®</sup> group and 8.26% in the OsseoFix<sup>®</sup> groups. A significant difference from augmentation was measured in both groups (<i>p</i> < 0.05), but there was no significant difference between the EVA<sup>®</sup> and OsseoFix<sup>®</sup> groups in anterior VBH restoration. The ultimate strengths of the EVA<sup>®</sup> and OsseoFix<sup>®</sup> groups were 6071.4 ± 352.6 N and 6262.9 ± 529.2 N, respectively, both of which were statistically significantly higher than that of the intact group (4589.9 ± 474.6 N) (<i>p</i> < 0.05). The stiffnesses of the EVA<sup>®</sup>, OsseoFix<sup>®,</sup> and intact groups were 1087.2 ± 176.9, 1154.9 ± 168.9, and 1637.3 ± 340.8 N/mm, respectively, indicating that the stiffness was significantly higher in the intact group than in both the EVA<sup>®</sup> and OsseoFix<sup>®</sup> groups (<i>p</i> < 0.05). No significant differences were observed between the two augmentation procedures in height restoration or ultimate strength and stiffness. This novel EVA<sup>®</sup> system showed comparable height restoration and biomechanical performance to those of existing implants for human cadaveric osteoporotic compression fractures. Potential advantages of preventing cement posterior leakage and promoting cement interdigitation are expected with this ameliorated design. |
first_indexed | 2024-03-09T21:59:25Z |
format | Article |
id | doaj.art-36d568a70c7a40a5ae070ef9fbd24ca4 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-09T21:59:25Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-36d568a70c7a40a5ae070ef9fbd24ca42023-11-23T19:52:07ZengMDPI AGApplied Sciences2076-34172022-10-0112191016510.3390/app121910165Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric VertebraeMing-Kai Hsieh0Wen-Jer Chen1Mel S. Lee2Sheng-Yu Lin3Mu-Yi Liu4De-Mei Lee5Ching-Lung Tai6Department of Orthopedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanDepartment of Orthopedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanDepartment of Orthopedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanDepartment of Mechanical Engineering, Chang Gung University, Taoyuan 333, TaiwanDepartment of Biomedical Engineering, Chang Gung University, Taoyuan 333, TaiwanDepartment of Mechanical Engineering, Chang Gung University, Taoyuan 333, TaiwanDepartment of Orthopedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanUnacceptable sagittal alignment and cement leakage are major concerns of percutaneous vertebroplasty when treating patients with painful vertebral osteoporotic compression fractures. To maintain the restored vertebral height and reduce the reliance on cement as the major stabilizer, an expandable vertebral augment system (EVA<sup>®</sup>) made of titanium alloy consisting of a rigid tube encased by a barrel with an anterior expansion mechanism was developed. The aim of the current study was to determine whether this novel design is as effective as existing procedures in terms of height restoration and biomechanical performance. Eight osteoporotic vertebrae (T12-L3) confirmed by dual-energy X-ray absorptiometry from two fresh-frozen human cadavers (70- and 72-year-old females) were used. Twenty-five percent reduced anterior wedge vertebral compression fractures were created using a material testing machine. Four randomized specimens were augmented with EVA<sup>®</sup> (Chang Gu Biotechnology Co. Ltd., Taipei city, Taiwan), and another four randomized specimens were augmented with OsseoFix<sup>®</sup> (AlphaTec Spine Inc., Carlsbad, CA, USA). The implant size and cement volume were controlled. The anterior vertebral body height (VBH) ratio and pre/postaugmented ultimate strength and stiffness were measured and compared. The mean anterior VBH restoration ratio was 8.54% in the EVA<sup>®</sup> group and 8.26% in the OsseoFix<sup>®</sup> groups. A significant difference from augmentation was measured in both groups (<i>p</i> < 0.05), but there was no significant difference between the EVA<sup>®</sup> and OsseoFix<sup>®</sup> groups in anterior VBH restoration. The ultimate strengths of the EVA<sup>®</sup> and OsseoFix<sup>®</sup> groups were 6071.4 ± 352.6 N and 6262.9 ± 529.2 N, respectively, both of which were statistically significantly higher than that of the intact group (4589.9 ± 474.6 N) (<i>p</i> < 0.05). The stiffnesses of the EVA<sup>®</sup>, OsseoFix<sup>®,</sup> and intact groups were 1087.2 ± 176.9, 1154.9 ± 168.9, and 1637.3 ± 340.8 N/mm, respectively, indicating that the stiffness was significantly higher in the intact group than in both the EVA<sup>®</sup> and OsseoFix<sup>®</sup> groups (<i>p</i> < 0.05). No significant differences were observed between the two augmentation procedures in height restoration or ultimate strength and stiffness. This novel EVA<sup>®</sup> system showed comparable height restoration and biomechanical performance to those of existing implants for human cadaveric osteoporotic compression fractures. Potential advantages of preventing cement posterior leakage and promoting cement interdigitation are expected with this ameliorated design.https://www.mdpi.com/2076-3417/12/19/10165vertebral osteoporotic compression fractureexpandable vertebral augmentationhuman cadaveric vertebraevertebral body height restoration ratiomechanical test |
spellingShingle | Ming-Kai Hsieh Wen-Jer Chen Mel S. Lee Sheng-Yu Lin Mu-Yi Liu De-Mei Lee Ching-Lung Tai Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae Applied Sciences vertebral osteoporotic compression fracture expandable vertebral augmentation human cadaveric vertebrae vertebral body height restoration ratio mechanical test |
title | Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae |
title_full | Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae |
title_fullStr | Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae |
title_full_unstemmed | Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae |
title_short | Biomechanical Evaluation of a Novel Expandable Vertebral Augmentation System Using Human Cadaveric Vertebrae |
title_sort | biomechanical evaluation of a novel expandable vertebral augmentation system using human cadaveric vertebrae |
topic | vertebral osteoporotic compression fracture expandable vertebral augmentation human cadaveric vertebrae vertebral body height restoration ratio mechanical test |
url | https://www.mdpi.com/2076-3417/12/19/10165 |
work_keys_str_mv | AT mingkaihsieh biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae AT wenjerchen biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae AT melslee biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae AT shengyulin biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae AT muyiliu biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae AT demeilee biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae AT chinglungtai biomechanicalevaluationofanovelexpandablevertebralaugmentationsystemusinghumancadavericvertebrae |