Macroporous Activated Carbon Derived from Rapeseed Shell for Lithium–Sulfur Batteries

Lithium–sulfur batteries have drawn considerable attention because of their extremely high energy density. Activated carbon (AC) is an ideal matrix for sulfur because of its high specific surface area, large pore volume, small-size nanopores, and simple preparation. In this work, through KOH activat...

Full description

Bibliographic Details
Main Authors: Mingbo Zheng, Qin Hu, Songtao Zhang, Hao Tang, Lulu Li, Huan Pang
Format: Article
Language:English
Published: MDPI AG 2017-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/7/10/1036
Description
Summary:Lithium–sulfur batteries have drawn considerable attention because of their extremely high energy density. Activated carbon (AC) is an ideal matrix for sulfur because of its high specific surface area, large pore volume, small-size nanopores, and simple preparation. In this work, through KOH activation, AC materials with different porous structure parameters were prepared using waste rapeseed shells as precursors. Effects of KOH amount, activated temperature, and activated time on pore structure parameters of ACs were studied. AC sample with optimal pore structure parameters was investigated as sulfur host materials. Applied in lithium–sulfur batteries, the AC/S composite (60 wt % sulfur) exhibited a high specific capacity of 1065 mAh g−1 at 200 mA g−1 and a good capacity retention of 49% after 1000 cycles at 1600 mA g−1. The key factor for good cycling stability involves the restraining effect of small-sized nanopores of the AC framework on the diffusion of polysulfides to bulk electrolyte and the loss of the active material sulfur. Results demonstrated that AC materials derived from rapeseed shells are promising materials for sulfur loading.
ISSN:2076-3417