Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
With current advances in automated driving, optical sensors like cameras and LiDARs are playing an increasingly important role in modern driver assistance systems. However, these sensors face challenges from adverse weather effects like fog and precipitation, which significantly degrade the sensor p...
Hoofdauteurs: | Marcel Kettelgerdes, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, Gordon Elger |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
MDPI AG
2024-06-01
|
Reeks: | Remote Sensing |
Onderwerpen: | |
Online toegang: | https://www.mdpi.com/2072-4292/16/13/2407 |
Gelijkaardige items
-
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
door: Jianqing Wu, et al.
Gepubliceerd in: (2020-06-01) -
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
door: Wing Yi Pao, et al.
Gepubliceerd in: (2024-05-01) -
Weather /
door: 597827 Rubin, Joel author
Gepubliceerd in: (c200) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
door: Jinho Lee, et al.
Gepubliceerd in: (2022-07-01) -
Towards a Model of Snow Accretion for Autonomous Vehicles
door: Mateus Carvalho, et al.
Gepubliceerd in: (2024-04-01)