Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
With current advances in automated driving, optical sensors like cameras and LiDARs are playing an increasingly important role in modern driver assistance systems. However, these sensors face challenges from adverse weather effects like fog and precipitation, which significantly degrade the sensor p...
المؤلفون الرئيسيون: | Marcel Kettelgerdes, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, Gordon Elger |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2024-06-01
|
سلاسل: | Remote Sensing |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/2072-4292/16/13/2407 |
مواد مشابهة
-
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
حسب: Jianqing Wu, وآخرون
منشور في: (2020-06-01) -
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
حسب: Wing Yi Pao, وآخرون
منشور في: (2024-05-01) -
Weather /
حسب: 597827 Rubin, Joel author
منشور في: (c200) -
Pedestrian Detection in Severe Weather Conditions
حسب: P. Tumas, وآخرون
منشور في: (2020-01-01) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
حسب: Jinho Lee, وآخرون
منشور في: (2022-07-01)