Precise Adverse Weather Characterization by Deep-Learning-Based Noise Processing in Automotive LiDAR Sensors
With current advances in automated driving, optical sensors like cameras and LiDARs are playing an increasingly important role in modern driver assistance systems. However, these sensors face challenges from adverse weather effects like fog and precipitation, which significantly degrade the sensor p...
Κύριοι συγγραφείς: | Marcel Kettelgerdes, Nicolas Sarmiento, Hüseyin Erdogan, Bernhard Wunderle, Gordon Elger |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
MDPI AG
2024-06-01
|
Σειρά: | Remote Sensing |
Θέματα: | |
Διαθέσιμο Online: | https://www.mdpi.com/2072-4292/16/13/2407 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
ανά: Jianqing Wu, κ.ά.
Έκδοση: (2020-06-01) -
Investigation of Automotive LiDAR Vision in Rain from Material and Optical Perspectives
ανά: Wing Yi Pao, κ.ά.
Έκδοση: (2024-05-01) -
Weather /
ανά: 597827 Rubin, Joel author
Έκδοση: (c200) -
GAN-Based LiDAR Translation between Sunny and Adverse Weather for Autonomous Driving and Driving Simulation
ανά: Jinho Lee, κ.ά.
Έκδοση: (2022-07-01) -
Towards a Model of Snow Accretion for Autonomous Vehicles
ανά: Mateus Carvalho, κ.ά.
Έκδοση: (2024-04-01)