Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids

This paper presents experimental measurements of adiabatic effectiveness for three transpiration cooling porosities (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo...

Full description

Bibliographic Details
Main Authors: Benjamin J. Brimacombe, James A. Scobie, Joseph M. Flynn, Carl M. Sangan, Oliver J. Pountney
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:International Journal of Turbomachinery, Propulsion and Power
Subjects:
Online Access:https://www.mdpi.com/2504-186X/8/4/50
Description
Summary:This paper presents experimental measurements of adiabatic effectiveness for three transpiration cooling porosities (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo></mrow></semantics></math></inline-formula> 0.3, 0.4, and 0.5) constructed from gyroid lattice structures. To the authors’ knowledge, this is the first use of a Triply Periodic Minimal Surface (TPMS) function to produce transpiration test coupons of varying porosity. Polymer gyroid lattice structures were successfully printed using Stereolithography (SLA) down to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo></mrow></semantics></math></inline-formula> 0.3 for a print resolution of 25 microns and unit cell size of 2 mm. Cooling performance was measured in a small-scale wind tunnel. High-resolution Infrared Thermography was used to determine wall temperatures downstream of the porous section. When tested at both common blowing ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math></inline-formula> = 0.029, 0.048, and 0.062) and common injection ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo> </mo></mrow></semantics></math></inline-formula>= 0.010, 0.017, and 0.022) the cooling performance was found to be dependent on porosity for constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math></inline-formula> but not for constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi></mrow></semantics></math></inline-formula>. Having determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi></mrow></semantics></math></inline-formula> as the more important parameter for comparison, results are presented alongside transpiration and effusion data from literature.
ISSN:2504-186X