Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids

This paper presents experimental measurements of adiabatic effectiveness for three transpiration cooling porosities (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo...

Full description

Bibliographic Details
Main Authors: Benjamin J. Brimacombe, James A. Scobie, Joseph M. Flynn, Carl M. Sangan, Oliver J. Pountney
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:International Journal of Turbomachinery, Propulsion and Power
Subjects:
Online Access:https://www.mdpi.com/2504-186X/8/4/50
_version_ 1797380597900902400
author Benjamin J. Brimacombe
James A. Scobie
Joseph M. Flynn
Carl M. Sangan
Oliver J. Pountney
author_facet Benjamin J. Brimacombe
James A. Scobie
Joseph M. Flynn
Carl M. Sangan
Oliver J. Pountney
author_sort Benjamin J. Brimacombe
collection DOAJ
description This paper presents experimental measurements of adiabatic effectiveness for three transpiration cooling porosities (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo></mrow></semantics></math></inline-formula> 0.3, 0.4, and 0.5) constructed from gyroid lattice structures. To the authors’ knowledge, this is the first use of a Triply Periodic Minimal Surface (TPMS) function to produce transpiration test coupons of varying porosity. Polymer gyroid lattice structures were successfully printed using Stereolithography (SLA) down to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo></mrow></semantics></math></inline-formula> 0.3 for a print resolution of 25 microns and unit cell size of 2 mm. Cooling performance was measured in a small-scale wind tunnel. High-resolution Infrared Thermography was used to determine wall temperatures downstream of the porous section. When tested at both common blowing ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math></inline-formula> = 0.029, 0.048, and 0.062) and common injection ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo> </mo></mrow></semantics></math></inline-formula>= 0.010, 0.017, and 0.022) the cooling performance was found to be dependent on porosity for constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math></inline-formula> but not for constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi></mrow></semantics></math></inline-formula>. Having determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi></mrow></semantics></math></inline-formula> as the more important parameter for comparison, results are presented alongside transpiration and effusion data from literature.
first_indexed 2024-03-08T20:40:38Z
format Article
id doaj.art-36e259f523c24bbfb804181f475ca396
institution Directory Open Access Journal
issn 2504-186X
language English
last_indexed 2024-03-08T20:40:38Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series International Journal of Turbomachinery, Propulsion and Power
spelling doaj.art-36e259f523c24bbfb804181f475ca3962023-12-22T14:15:41ZengMDPI AGInternational Journal of Turbomachinery, Propulsion and Power2504-186X2023-12-01845010.3390/ijtpp8040050Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through GyroidsBenjamin J. Brimacombe0James A. Scobie1Joseph M. Flynn2Carl M. Sangan3Oliver J. Pountney4Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UKDepartment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UKDepartment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UKDepartment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UKDepartment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UKThis paper presents experimental measurements of adiabatic effectiveness for three transpiration cooling porosities (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo></mrow></semantics></math></inline-formula> 0.3, 0.4, and 0.5) constructed from gyroid lattice structures. To the authors’ knowledge, this is the first use of a Triply Periodic Minimal Surface (TPMS) function to produce transpiration test coupons of varying porosity. Polymer gyroid lattice structures were successfully printed using Stereolithography (SLA) down to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>=</mo></mrow></semantics></math></inline-formula> 0.3 for a print resolution of 25 microns and unit cell size of 2 mm. Cooling performance was measured in a small-scale wind tunnel. High-resolution Infrared Thermography was used to determine wall temperatures downstream of the porous section. When tested at both common blowing ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math></inline-formula> = 0.029, 0.048, and 0.062) and common injection ratios (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo> </mo></mrow></semantics></math></inline-formula>= 0.010, 0.017, and 0.022) the cooling performance was found to be dependent on porosity for constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi></mrow></semantics></math></inline-formula> but not for constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi></mrow></semantics></math></inline-formula>. Having determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi></mrow></semantics></math></inline-formula> as the more important parameter for comparison, results are presented alongside transpiration and effusion data from literature.https://www.mdpi.com/2504-186X/8/4/50transpiration coolingperiodic porous structuresgyroidsadditive manufacturinginjection ratioeffective area
spellingShingle Benjamin J. Brimacombe
James A. Scobie
Joseph M. Flynn
Carl M. Sangan
Oliver J. Pountney
Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids
International Journal of Turbomachinery, Propulsion and Power
transpiration cooling
periodic porous structures
gyroids
additive manufacturing
injection ratio
effective area
title Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids
title_full Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids
title_fullStr Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids
title_full_unstemmed Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids
title_short Effect of Porosity and Injection Ratio on the Performance of Transpiration Cooling through Gyroids
title_sort effect of porosity and injection ratio on the performance of transpiration cooling through gyroids
topic transpiration cooling
periodic porous structures
gyroids
additive manufacturing
injection ratio
effective area
url https://www.mdpi.com/2504-186X/8/4/50
work_keys_str_mv AT benjaminjbrimacombe effectofporosityandinjectionratioontheperformanceoftranspirationcoolingthroughgyroids
AT jamesascobie effectofporosityandinjectionratioontheperformanceoftranspirationcoolingthroughgyroids
AT josephmflynn effectofporosityandinjectionratioontheperformanceoftranspirationcoolingthroughgyroids
AT carlmsangan effectofporosityandinjectionratioontheperformanceoftranspirationcoolingthroughgyroids
AT oliverjpountney effectofporosityandinjectionratioontheperformanceoftranspirationcoolingthroughgyroids