DEDIC: Density Estimation Clustering Method Using Directly Interconnected Cores
Numerous clustering algorithms become invalid when data classes are unbalanced and close to each other, or clusters are arbitrary shapes and have different densities. A novel region density based clustering algorithm, DEDIC, is proposed to meet this challenge. It is based on recognizing dense region...
Главные авторы: | Yisen Lin, Xinlun Zhang, Lei Liu, Huichen Qu |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
IEEE
2022-01-01
|
Серии: | IEEE Access |
Предметы: | |
Online-ссылка: | https://ieeexplore.ieee.org/document/9987490/ |
Схожие документы
-
A Multi-Density Clustering Algorithm Based on Similarity for Dataset With Density Variation
по: Xingxing Zhou, и др.
Опубликовано: (2019-01-01) -
Corrections to “DEDIC: Density Estimation Clustering Method Using Directly Interconnected Cores”
по: Yisen Lin, и др.
Опубликовано: (2024-01-01) -
Clustering benchmark datasets exploiting the fundamental clustering problems
по: Michael C. Thrun, и др.
Опубликовано: (2020-06-01) -
Fast clustering algorithm based on MST of representative points
по: Hui Du, и др.
Опубликовано: (2023-07-01) -
An Internal Validity Index Based on Density-Involved Distance
по: Lianyu Hu, и др.
Опубликовано: (2019-01-01)