Targeted Degradation of Androgen Receptor by VNPP433-3β in Castration-Resistant Prostate Cancer Cells Implicates Interaction with E3 Ligase MDM2 Resulting in Ubiquitin-Proteasomal Degradation

Targeted protein degradation is a fast-evolving therapeutic strategy to target even the traditionally undruggable target proteins. Contrary to the traditional small-molecule inhibitors of enzyme or receptor antagonists that bind the active site pockets in the target protein, molecular glue degraders...

Full description

Bibliographic Details
Main Authors: Elizabeth Thomas, Retheesh S. Thankan, Puranik Purushottamachar, David J. Weber, Vincent C. O. Njar
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/15/4/1198
Description
Summary:Targeted protein degradation is a fast-evolving therapeutic strategy to target even the traditionally undruggable target proteins. Contrary to the traditional small-molecule inhibitors of enzyme or receptor antagonists that bind the active site pockets in the target protein, molecular glue degraders facilitate interaction of target proteins with E3 ubiquitin ligases by stabilizing the ternary complex and induce physical proximity, thereby triggering ubiquitination and subsequent proteasomal degradation. AR plays a key role in all stages of prostate cancer. It is activated by the binding of androgenic hormones and transcriptionally regulates multiple genes including the ones that regulate cell cycle. Using HiBiT CRISPR cell line, biochemical methods, and RNA sequencing, we report the potential role of VNPP433-3β, the next generation galeterone analog as molecular glue that brings together AR, the key driver of prostate cancer and MDM2, an E3 ubiquitin ligase leading to ubiquitination and subsequent degradation of f-AR and AR-V7 in prostate cancer cells.
ISSN:2072-6694