Model prediction of the impact of zinc oxide nanoparticles on the fluid loss of water-based drilling mud

The use of nanoparticles in the formulation of drilling mud has gained unparalleled research effort. Despite the advancement of nanotechnology, key challenges still remain which relates to attaining predictable properties for nano-drilling muds. In this work, Zinc Oxide (ZnO) nanoparticles were synt...

Full description

Bibliographic Details
Main Authors: Richard O. Afolabi, Peter Paseda, Sedogan Hunjenukon, Esther A. Oyeniyi
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Cogent Engineering
Subjects:
Online Access:http://dx.doi.org/10.1080/23311916.2018.1514575
Description
Summary:The use of nanoparticles in the formulation of drilling mud has gained unparalleled research effort. Despite the advancement of nanotechnology, key challenges still remain which relates to attaining predictable properties for nano-drilling muds. In this work, Zinc Oxide (ZnO) nanoparticles were synthesized and applied to a water-based drilling mud. The characterization of the ZnO nanoparticles was done using Energy Dispersive X-Ray (EDX) Spectroscopy, Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). A basic fundamental approach was applied in deriving a novel model, which predicts the impact of the nanoparticles on the fluid loss of drilling mud during the filtration process. This was done taking into account the kinetics of mud cake formation and colloidal behavior of the nanoparticles. The new fluid loss model gave a better description of the fluid loss behavior of the nano-drilling mud when compared with the American Petroleum Institute (API) model using statistical measures.
ISSN:2331-1916