Summary: | Abstract Background Group A rotavirus (RVA) is a common causative agent of acute gastroenteritis in infants and young children worldwide. RVA P genotypes, determined by VP4 sequences, have been confirmed to infect humans and animals. However, their codon usage patterns that are essential to obtain insights into the viral evolution, host adaptability, and genetic characterization remained unclear, especially across animal hosts. Results We performed a comprehensive codon usage analysis of eight host-specific RVA P genotypes, including human RVA (P[4] and P[8]), porcine RVA (P[13] and P[23]), and zoonotic RVA (P[1], P[6], P[7] and P[19]), based on 233 VP4 complete coding sequences. Nucleotide composition, relative synonymous codon usage (RSCU), and effective number of codons (ENC) were calculated. Principal component analysis (PCA) based on RSCU values was used to explore the codon usage patterns of different RVA P genotypes. In addition, mutation pressure and natural selection were identified by using ENC-plot, parity rule 2 plot, and neutrality plot analyses. All VP4 sequences preferred using A/U nucleotides (A: 0.354-0.377, U: 0.267-0.314) than G/C nucleotides across genotypes. Similarly, majority of commonly used synonymous codons were likely to end with A/U nucleotides (A: 9/18-12/18, U: 6/18-9/18). In PCA, human, porcine, and zoonotic genotypes clustered separately in terms of RSCU values, indicating the host-specific codon usage patterns; however, porcine and zoonotic genotypes were partly overlapped. Human genotypes, P[4] and P[8], had stronger codon usage bias, as indicated by more over-represented codons and lower ENC, compared to porcine and zoonotic genotypes. Moreover, natural selection was determined to be a predominant driver in shaping the codon usage bias across the eight P genotypes. In addition, mutation pressure contributed to the codon usage bias of human genotypes. Conclusions Our study identified a strong codon usage bias of human RVA P genotypes attributable to both natural selection and mutation pressure, whereas similar codon usage bias between porcine and zoonotic genotypes predominantly attributable to natural selection. It further suggests possible cross-species transmission. Therefore, it warrants further surveillance of RVA P genotypes for early identification of zoonotic infection.
|