Some congruences for 3-component multipartitions

Let p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 fo...

Full description

Bibliographic Details
Main Authors: Zhao Tao Yan, Jin Lily J., Gu C.
Format: Article
Language:English
Published: De Gruyter 2016-01-01
Series:Open Mathematics
Subjects:
Online Access:http://www.degruyter.com/view/j/math.2016.14.issue-1/math-2016-0067/math-2016-0067.xml?format=INT
_version_ 1818446477228244992
author Zhao Tao Yan
Jin Lily J.
Gu C.
author_facet Zhao Tao Yan
Jin Lily J.
Gu C.
author_sort Zhao Tao Yan
collection DOAJ
description Let p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 for p3(n) by using some theta function identities. For example, we prove that for n ≥ 0, p3 (243n + 233) ≡ p3 (729n + 638) ≡ 0 (mod 310).
first_indexed 2024-12-14T19:48:21Z
format Article
id doaj.art-3724370bd2ea47629156934f02b840f4
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-14T19:48:21Z
publishDate 2016-01-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-3724370bd2ea47629156934f02b840f42022-12-21T22:49:31ZengDe GruyterOpen Mathematics2391-54552016-01-0114178378810.1515/math-2016-0067math-2016-0067Some congruences for 3-component multipartitionsZhao Tao Yan0Jin Lily J.1Gu C.2Department of Mathematics, Jiangsu University, Jiangsu, Zhenjiang 212013, ChinaSchool of Mathematics, Nanjing Normal University, Taizhou College, Jiangsu, Taizhou 225300, ChinaDepartment of Mathematics, Jiangsu University, Jiangsu, Zhenjiang 212013, ChinaLet p3(n) denote the number of 3-component multipartitions of n. Recently, using a 3-dissection formula for the generating function of p3(n), Baruah and Ojah proved that for n ≥ 0, p3(9n + 5) ≡ 0 (mod 33) and p3 (9n + 8) ≡ 0 (mod 34). In this paper, we prove several congruences modulo powers of 3 for p3(n) by using some theta function identities. For example, we prove that for n ≥ 0, p3 (243n + 233) ≡ p3 (729n + 638) ≡ 0 (mod 310).http://www.degruyter.com/view/j/math.2016.14.issue-1/math-2016-0067/math-2016-0067.xml?format=INTcongruencesmultipartitionstheta functions11p8305a17
spellingShingle Zhao Tao Yan
Jin Lily J.
Gu C.
Some congruences for 3-component multipartitions
Open Mathematics
congruences
multipartitions
theta functions
11p83
05a17
title Some congruences for 3-component multipartitions
title_full Some congruences for 3-component multipartitions
title_fullStr Some congruences for 3-component multipartitions
title_full_unstemmed Some congruences for 3-component multipartitions
title_short Some congruences for 3-component multipartitions
title_sort some congruences for 3 component multipartitions
topic congruences
multipartitions
theta functions
11p83
05a17
url http://www.degruyter.com/view/j/math.2016.14.issue-1/math-2016-0067/math-2016-0067.xml?format=INT
work_keys_str_mv AT zhaotaoyan somecongruencesfor3componentmultipartitions
AT jinlilyj somecongruencesfor3componentmultipartitions
AT guc somecongruencesfor3componentmultipartitions