Replicate whole-genome next-generation sequencing data derived from Caucasian donor saliva samples

Next-generation sequencing (NGS) of whole genomes has become more accessible to biomedical researchers as the sequencing price continues to drop, and more laboratories have NGS facilities or have access to a core facility. However, the rapid and robust development of practical bioinformatics pipelin...

Full description

Bibliographic Details
Main Authors: Marcus Høy Hansen, Charlotte Guldborg Nyvold
Format: Article
Language:English
Published: Elsevier 2021-10-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340921006338
Description
Summary:Next-generation sequencing (NGS) of whole genomes has become more accessible to biomedical researchers as the sequencing price continues to drop, and more laboratories have NGS facilities or have access to a core facility. However, the rapid and robust development of practical bioinformatics pipelines partly depends on convenient access to data for the testing of algorithms. Publicly available data sets constitute a part of this strategy.Here, we provide a triplicate whole-genome paired-end sequencing data set, consisting of 1.38 billion raw sequencing reads derived from saliva DNA from a single anonymous male Caucasian donor, with the average sequencing depths aimed at 30x for two of the samples and 4x for a low-coverage sample. The raw number of single nucleotide variants were 3.3–4 million and the median variant read depth of GATK4-passed variants in three samples was 22, 18, and 10. 81% of all variants were found in two or three of the samples, whereas 19% were singletons. The karyotype was evaluated as 46,XY with no apparent copy-number variation.The data set is provided without restrictions for research, educational or commercial purposes.
ISSN:2352-3409