Approximation for a generalization of Bernstein operators

Abstract In this paper, we give a direct approximation theorem, inverse theorem, and equivalent theorem for a generalization of Bernstein operators in the space L p [ 0 , 1 ] $L_{p}[0,1]$ ( 1 ≤ p ≤ ∞ $1\leq p \leq\infty$ ).

Bibliographic Details
Main Authors: Guofen Liu, Xiuzhong Yang
Format: Article
Language:English
Published: SpringerOpen 2016-08-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1147-4
_version_ 1818872642814345216
author Guofen Liu
Xiuzhong Yang
author_facet Guofen Liu
Xiuzhong Yang
author_sort Guofen Liu
collection DOAJ
description Abstract In this paper, we give a direct approximation theorem, inverse theorem, and equivalent theorem for a generalization of Bernstein operators in the space L p [ 0 , 1 ] $L_{p}[0,1]$ ( 1 ≤ p ≤ ∞ $1\leq p \leq\infty$ ).
first_indexed 2024-12-19T12:42:04Z
format Article
id doaj.art-372dee1e29414ff28f07bff403a9ebdf
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-19T12:42:04Z
publishDate 2016-08-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-372dee1e29414ff28f07bff403a9ebdf2022-12-21T20:20:56ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-08-012016111010.1186/s13660-016-1147-4Approximation for a generalization of Bernstein operatorsGuofen Liu0Xiuzhong Yang1College of Mathematics and Information Science, Hebei Normal UniversityCollege of Mathematics and Information Science, Hebei Normal UniversityAbstract In this paper, we give a direct approximation theorem, inverse theorem, and equivalent theorem for a generalization of Bernstein operators in the space L p [ 0 , 1 ] $L_{p}[0,1]$ ( 1 ≤ p ≤ ∞ $1\leq p \leq\infty$ ).http://link.springer.com/article/10.1186/s13660-016-1147-4generalized Bernstein-Kantorovich operatorsmodulus of smoothnessK-functionalequivalent approximation theorem
spellingShingle Guofen Liu
Xiuzhong Yang
Approximation for a generalization of Bernstein operators
Journal of Inequalities and Applications
generalized Bernstein-Kantorovich operators
modulus of smoothness
K-functional
equivalent approximation theorem
title Approximation for a generalization of Bernstein operators
title_full Approximation for a generalization of Bernstein operators
title_fullStr Approximation for a generalization of Bernstein operators
title_full_unstemmed Approximation for a generalization of Bernstein operators
title_short Approximation for a generalization of Bernstein operators
title_sort approximation for a generalization of bernstein operators
topic generalized Bernstein-Kantorovich operators
modulus of smoothness
K-functional
equivalent approximation theorem
url http://link.springer.com/article/10.1186/s13660-016-1147-4
work_keys_str_mv AT guofenliu approximationforageneralizationofbernsteinoperators
AT xiuzhongyang approximationforageneralizationofbernsteinoperators