Summary: | We present a new method for obtaining stability conditions for certain classes of delay differential equations. The method is based on the transition from an individual equation to a family of equations, and next the selection of a representative of this family, the test equation, asymptotic properties of which determine those of all equations in the family. This approach allows us to obtain the conditions that are the criteria for the stability of all equations of a given family. These conditions are formulated in terms of the parameters of the class of equations being studied, and are effectively verifiable. The main difference of the proposed method from the known general methods (using Lyapunov–Krasovsky functionals, Razumikhin functions, and Azbelev <i>W</i>-substitution) is the emphasis on the exactness of the result; the difference from the known exact methods is a significant expansion of the range of applicability. The method provides an algorithm for checking stability conditions, which is carried out in a finite number of operations and allows the use of numerical methods.
|