SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation

In the dataset presented in this article, samples belonging to one of the following crops, apple, broccoli, leek, and mushroom, were measured by hyperspectral cameras in the visible/near-infrared spectral domain (430-900 nm). The dataset was compiled by putting together measurements from different c...

Full description

Bibliographic Details
Main Authors: Ioannis Malounas, Wout Vierbergen, Sezer Kutluk, Manuela Zude-Sasse, Kai Yang, Ming Zhao, Dimitrios Argyropoulos, Jonathan Van Beek, Eva Ampe, Spyros Fountas
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340924000143
_version_ 1797317111808262144
author Ioannis Malounas
Wout Vierbergen
Sezer Kutluk
Manuela Zude-Sasse
Kai Yang
Ming Zhao
Dimitrios Argyropoulos
Jonathan Van Beek
Eva Ampe
Spyros Fountas
author_facet Ioannis Malounas
Wout Vierbergen
Sezer Kutluk
Manuela Zude-Sasse
Kai Yang
Ming Zhao
Dimitrios Argyropoulos
Jonathan Van Beek
Eva Ampe
Spyros Fountas
author_sort Ioannis Malounas
collection DOAJ
description In the dataset presented in this article, samples belonging to one of the following crops, apple, broccoli, leek, and mushroom, were measured by hyperspectral cameras in the visible/near-infrared spectral domain (430-900 nm). The dataset was compiled by putting together measurements from different calibrated hyperspectral imaging cameras and crops to facilitate the training of artificial intelligence models, helping to overcome the generalization problem of hyperspectral models. In particular, this dataset focuses on estimating dry matter content across various crops by a single model in a non-destructive way using hyperspectral measurements. This dataset contains extracted mean reflectance spectra for each sample (n=1028) and their respective dry matter content (%).
first_indexed 2024-03-08T03:30:08Z
format Article
id doaj.art-3748c7c75a8a424aa8cd4230c39bbbd9
institution Directory Open Access Journal
issn 2352-3409
language English
last_indexed 2024-03-08T03:30:08Z
publishDate 2024-02-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj.art-3748c7c75a8a424aa8cd4230c39bbbd92024-02-11T05:11:03ZengElsevierData in Brief2352-34092024-02-0152110040SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimationIoannis Malounas0Wout Vierbergen1Sezer Kutluk2Manuela Zude-Sasse3Kai Yang4Ming Zhao5Dimitrios Argyropoulos6Jonathan Van Beek7Eva Ampe8Spyros Fountas9Agricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, Greece; Corresponding author.Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 115 bus 1, 9820 Merelbeke, BelgiumDepartment of Datascience in Bioeconomy, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam-Bornim, GermanyDepartment of Agromechatronic, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam-Bornim, GermanySchool of Biosystems and Food Engineering, University College Dublin (UCD), Stillorgan Rd, Belfield, Dublin 4, IrelandSchool of Biosystems and Food Engineering, University College Dublin (UCD), Stillorgan Rd, Belfield, Dublin 4, IrelandSchool of Biosystems and Food Engineering, University College Dublin (UCD), Stillorgan Rd, Belfield, Dublin 4, IrelandTechnology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 115 bus 1, 9820 Merelbeke, BelgiumINAGRO VZW, Ieperseweg 87, 8800 Rumbeke-Beitem, BelgiumAgricultural University of Athens (AUA), Iera Odos 75, 11855 Athens, GreeceIn the dataset presented in this article, samples belonging to one of the following crops, apple, broccoli, leek, and mushroom, were measured by hyperspectral cameras in the visible/near-infrared spectral domain (430-900 nm). The dataset was compiled by putting together measurements from different calibrated hyperspectral imaging cameras and crops to facilitate the training of artificial intelligence models, helping to overcome the generalization problem of hyperspectral models. In particular, this dataset focuses on estimating dry matter content across various crops by a single model in a non-destructive way using hyperspectral measurements. This dataset contains extracted mean reflectance spectra for each sample (n=1028) and their respective dry matter content (%).http://www.sciencedirect.com/science/article/pii/S2352340924000143Hyperspectral imagingArtificial intelligenceAppleBroccoliLeekMushroom
spellingShingle Ioannis Malounas
Wout Vierbergen
Sezer Kutluk
Manuela Zude-Sasse
Kai Yang
Ming Zhao
Dimitrios Argyropoulos
Jonathan Van Beek
Eva Ampe
Spyros Fountas
SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation
Data in Brief
Hyperspectral imaging
Artificial intelligence
Apple
Broccoli
Leek
Mushroom
title SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation
title_full SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation
title_fullStr SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation
title_full_unstemmed SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation
title_short SpectroFood dataset: A comprehensive fruit and vegetable hyperspectral meta-dataset for dry matter estimation
title_sort spectrofood dataset a comprehensive fruit and vegetable hyperspectral meta dataset for dry matter estimation
topic Hyperspectral imaging
Artificial intelligence
Apple
Broccoli
Leek
Mushroom
url http://www.sciencedirect.com/science/article/pii/S2352340924000143
work_keys_str_mv AT ioannismalounas spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT woutvierbergen spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT sezerkutluk spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT manuelazudesasse spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT kaiyang spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT mingzhao spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT dimitriosargyropoulos spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT jonathanvanbeek spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT evaampe spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation
AT spyrosfountas spectrofooddatasetacomprehensivefruitandvegetablehyperspectralmetadatasetfordrymatterestimation