Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads

Abstract Tandemly repeated DNA is highly mutable and causes at least 31 diseases, but it is hard to detect pathogenic repeat expansions genome-wide. Here, we report robust detection of human repeat expansions from careful alignments of long but error-prone (PacBio and nanopore) reads to a reference...

Full description

Bibliographic Details
Main Authors: Satomi Mitsuhashi, Martin C. Frith, Takeshi Mizuguchi, Satoko Miyatake, Tomoko Toyota, Hiroaki Adachi, Yoko Oma, Yoshihiro Kino, Hiroaki Mitsuhashi, Naomichi Matsumoto
Format: Article
Language:English
Published: BMC 2019-03-01
Series:Genome Biology
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13059-019-1667-6
Description
Summary:Abstract Tandemly repeated DNA is highly mutable and causes at least 31 diseases, but it is hard to detect pathogenic repeat expansions genome-wide. Here, we report robust detection of human repeat expansions from careful alignments of long but error-prone (PacBio and nanopore) reads to a reference genome. Our method is robust to systematic sequencing errors, inexact repeats with fuzzy boundaries, and low sequencing coverage. By comparing to healthy controls, we prioritize pathogenic expansions within the top 10 out of 700,000 tandem repeats in whole genome sequencing data. This may help to elucidate the many genetic diseases whose causes remain unknown.
ISSN:1474-760X