Inequalities for Information Potentials and Entropies

We consider a probability distribution <inline-formula><math display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>p</mi><mn>0</mn></msub><mrow><mo>(</mo>&l...

Full description

Bibliographic Details
Main Authors: Ana Maria Acu, Alexandra Măduţa, Diana Otrocol, Ioan Raşa
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/2056
_version_ 1797547548972417024
author Ana Maria Acu
Alexandra Măduţa
Diana Otrocol
Ioan Raşa
author_facet Ana Maria Acu
Alexandra Măduţa
Diana Otrocol
Ioan Raşa
author_sort Ana Maria Acu
collection DOAJ
description We consider a probability distribution <inline-formula><math display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>p</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>p</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>…</mo></mfenced></semantics></math></inline-formula> depending on a real parameter <i>x</i>. The associated information potential is <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mi>k</mi></munder></mstyle><msubsup><mi>p</mi><mrow><mi>k</mi></mrow><mn>2</mn></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The Rényi entropy and the Tsallis entropy of order 2 can be expressed as <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo form="prefix">log</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We establish recurrence relations, inequalities and bounds for <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula>, which lead immediately to similar relations, inequalities and bounds for the two entropies. We show that some sequences <inline-formula><math display="inline"><semantics><msub><mfenced separators="" open="(" close=")"><msub><mi>R</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfenced><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mfenced separators="" open="(" close=")"><msub><mi>T</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfenced><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula>, associated with sequences of classical positive linear operators, are concave and increasing. Two conjectures are formulated involving the information potentials associated with the Durrmeyer density of probability, respectively the Bleimann–Butzer–Hahn probability distribution.
first_indexed 2024-03-10T14:45:38Z
format Article
id doaj.art-37569925d437449fabfc593b6e7e97a2
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T14:45:38Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-37569925d437449fabfc593b6e7e97a22023-11-20T21:21:37ZengMDPI AGMathematics2227-73902020-11-01811205610.3390/math8112056Inequalities for Information Potentials and EntropiesAna Maria Acu0Alexandra Măduţa1Diana Otrocol2Ioan Raşa3Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Str. Dr. I. Ratiu, No. 5-7, RO-550012 Sibiu, RomaniaDepartment of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, RomaniaDepartment of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, RomaniaDepartment of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, RomaniaWe consider a probability distribution <inline-formula><math display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mi>p</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>p</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mo>…</mo></mfenced></semantics></math></inline-formula> depending on a real parameter <i>x</i>. The associated information potential is <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mi>k</mi></munder></mstyle><msubsup><mi>p</mi><mrow><mi>k</mi></mrow><mn>2</mn></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The Rényi entropy and the Tsallis entropy of order 2 can be expressed as <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo form="prefix">log</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mi>T</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>−</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We establish recurrence relations, inequalities and bounds for <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula>, which lead immediately to similar relations, inequalities and bounds for the two entropies. We show that some sequences <inline-formula><math display="inline"><semantics><msub><mfenced separators="" open="(" close=")"><msub><mi>R</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfenced><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mfenced separators="" open="(" close=")"><msub><mi>T</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mfenced><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula>, associated with sequences of classical positive linear operators, are concave and increasing. Two conjectures are formulated involving the information potentials associated with the Durrmeyer density of probability, respectively the Bleimann–Butzer–Hahn probability distribution.https://www.mdpi.com/2227-7390/8/11/2056probability distributionRényi entropyTsallis entropyinformation potentialfunctional equationsinequalities
spellingShingle Ana Maria Acu
Alexandra Măduţa
Diana Otrocol
Ioan Raşa
Inequalities for Information Potentials and Entropies
Mathematics
probability distribution
Rényi entropy
Tsallis entropy
information potential
functional equations
inequalities
title Inequalities for Information Potentials and Entropies
title_full Inequalities for Information Potentials and Entropies
title_fullStr Inequalities for Information Potentials and Entropies
title_full_unstemmed Inequalities for Information Potentials and Entropies
title_short Inequalities for Information Potentials and Entropies
title_sort inequalities for information potentials and entropies
topic probability distribution
Rényi entropy
Tsallis entropy
information potential
functional equations
inequalities
url https://www.mdpi.com/2227-7390/8/11/2056
work_keys_str_mv AT anamariaacu inequalitiesforinformationpotentialsandentropies
AT alexandramaduta inequalitiesforinformationpotentialsandentropies
AT dianaotrocol inequalitiesforinformationpotentialsandentropies
AT ioanrasa inequalitiesforinformationpotentialsandentropies