Geometry and complexity of O'Hara's algorithm

In this paper we analyze O'Hara's partition bijection. We present three type of results. First, we see that O'Hara's bijection can be viewed geometrically as a certain scissor congruence type result. Second, we present a number of new complexity bounds, proving that O'Hara&#...

Full description

Bibliographic Details
Main Authors: Matjaž Konvalinka, Igor Pak
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2009-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2692/pdf
Description
Summary:In this paper we analyze O'Hara's partition bijection. We present three type of results. First, we see that O'Hara's bijection can be viewed geometrically as a certain scissor congruence type result. Second, we present a number of new complexity bounds, proving that O'Hara's bijection is efficient in most cases and mildly exponential in general. Finally, we see that for identities with finite support, the map of the O'Hara's bijection can be computed in polynomial time, i.e. much more efficiently than by O'Hara's construction.
ISSN:1365-8050