Geometry and complexity of O'Hara's algorithm
In this paper we analyze O'Hara's partition bijection. We present three type of results. First, we see that O'Hara's bijection can be viewed geometrically as a certain scissor congruence type result. Second, we present a number of new complexity bounds, proving that O'Hara...
Main Authors: | Matjaž Konvalinka, Igor Pak |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2009-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/2692/pdf |
Similar Items
-
(k − 2)-linear connected components in hypergraphs of rank k
by: Florian Galliot, et al.
Published: (2023-11-01) -
On Kerov polynomials for Jack characters (extended abstract)
by: Valentin Féray, et al.
Published: (2013-01-01) -
A Quantization of a theorem of Goulden and Jackson
by: Matjaž Konvalinka, et al.
Published: (2008-01-01) -
Staircase Macdonald polynomials and the $q$-Discriminant
by: Adrien Boussicault, et al.
Published: (2008-01-01) -
Counting Shi regions with a fixed separating wall
by: Susanna Fishel, et al.
Published: (2011-01-01)