A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives

This article presents an efficient method for the numerical modeling of time fractional mixed diffusion and wave-diffusion equations with two Caputo derivatives of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics>...

Full description

Bibliographic Details
Main Authors: Raheel Kamal, Kamran, Saleh M. Alzahrani, Talal Alzahrani
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/5/381
_version_ 1797600012053512192
author Raheel Kamal
Kamran
Saleh M. Alzahrani
Talal Alzahrani
author_facet Raheel Kamal
Kamran
Saleh M. Alzahrani
Talal Alzahrani
author_sort Raheel Kamal
collection DOAJ
description This article presents an efficient method for the numerical modeling of time fractional mixed diffusion and wave-diffusion equations with two Caputo derivatives of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>β</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>. The numerical method is based on the Laplace transform technique combined with local radial basis functions. The method consists of three main steps: (i) first, the Laplace transform is used to transform the given time fractional model into an equivalent time-independent inhomogeneous problem in the frequency domain; (ii) in the second step, the local radial basis functions method is utilized to obtain an approximate solution for the reduced problem; (iii) finally, the Stehfest method is employed to convert the obtained solution from the frequency domain back to the time domain. The use of the Laplace transform eliminates the need for classical time-stepping techniques, which often require very small time steps to achieve accuracy. Additionally, the application of local radial basis functions helps overcome issues related to ill-conditioning and sensitivity to shape parameters typically encountered in global radial basis function methods. To validate the efficiency and accuracy of the proposed method, several test problems in regular and irregular domains with uniform and non-uniform nodes are considered.
first_indexed 2024-03-11T03:43:27Z
format Article
id doaj.art-376768249517401ab12f46f6b848af9e
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-11T03:43:27Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-376768249517401ab12f46f6b848af9e2023-11-18T01:26:19ZengMDPI AGFractal and Fractional2504-31102023-05-017538110.3390/fractalfract7050381A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s DerivativesRaheel Kamal0Kamran1Saleh M. Alzahrani2Talal Alzahrani3Department of Mathematics, Islamia College Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics, Islamia College Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, PakistanMathematics Department, Al-Qunfudhah University College, Umm Al-Qura University, Al-Qunfudhah 28821, Saudi ArabiaMathematics Department, Al-Qunfudhah University College, Umm Al-Qura University, Al-Qunfudhah 28821, Saudi ArabiaThis article presents an efficient method for the numerical modeling of time fractional mixed diffusion and wave-diffusion equations with two Caputo derivatives of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>β</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>. The numerical method is based on the Laplace transform technique combined with local radial basis functions. The method consists of three main steps: (i) first, the Laplace transform is used to transform the given time fractional model into an equivalent time-independent inhomogeneous problem in the frequency domain; (ii) in the second step, the local radial basis functions method is utilized to obtain an approximate solution for the reduced problem; (iii) finally, the Stehfest method is employed to convert the obtained solution from the frequency domain back to the time domain. The use of the Laplace transform eliminates the need for classical time-stepping techniques, which often require very small time steps to achieve accuracy. Additionally, the application of local radial basis functions helps overcome issues related to ill-conditioning and sensitivity to shape parameters typically encountered in global radial basis function methods. To validate the efficiency and accuracy of the proposed method, several test problems in regular and irregular domains with uniform and non-uniform nodes are considered.https://www.mdpi.com/2504-3110/7/5/381mixed diffusion and wave diffusion equationCaputo derivativeLaplace transformlocal radial basis function methodconvergencestability
spellingShingle Raheel Kamal
Kamran
Saleh M. Alzahrani
Talal Alzahrani
A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives
Fractal and Fractional
mixed diffusion and wave diffusion equation
Caputo derivative
Laplace transform
local radial basis function method
convergence
stability
title A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives
title_full A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives
title_fullStr A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives
title_full_unstemmed A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives
title_short A Hybrid Local Radial Basis Function Method for the Numerical Modeling of Mixed Diffusion and Wave-Diffusion Equations of Fractional Order Using Caputo’s Derivatives
title_sort hybrid local radial basis function method for the numerical modeling of mixed diffusion and wave diffusion equations of fractional order using caputo s derivatives
topic mixed diffusion and wave diffusion equation
Caputo derivative
Laplace transform
local radial basis function method
convergence
stability
url https://www.mdpi.com/2504-3110/7/5/381
work_keys_str_mv AT raheelkamal ahybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT kamran ahybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT salehmalzahrani ahybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT talalalzahrani ahybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT raheelkamal hybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT kamran hybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT salehmalzahrani hybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives
AT talalalzahrani hybridlocalradialbasisfunctionmethodforthenumericalmodelingofmixeddiffusionandwavediffusionequationsoffractionalorderusingcaputosderivatives