The Buckling Operator: Inverse Boundary Value Problem

In this paper, we consider a zeroth-order perturbation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow>&...

Full description

Bibliographic Details
Main Author: Yanjun Ma
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/2/268
Description
Summary:In this paper, we consider a zeroth-order perturbation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the buckling operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>Δ</mo><mn>2</mn></msup><mo>−</mo><mi>κ</mi><mo>Δ</mo></mrow></semantics></math></inline-formula>, which can be uniquely determined by measuring the Dirichlet-to-Neumann data on the boundary. We extend the conclusion of the biharmonic operator to the buckling operator, but the Dirichlet-to-Neumann map given in this study is more meaningful and general.
ISSN:2227-7390