Summary: | In this paper, we consider a zeroth-order perturbation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the buckling operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>Δ</mo><mn>2</mn></msup><mo>−</mo><mi>κ</mi><mo>Δ</mo></mrow></semantics></math></inline-formula>, which can be uniquely determined by measuring the Dirichlet-to-Neumann data on the boundary. We extend the conclusion of the biharmonic operator to the buckling operator, but the Dirichlet-to-Neumann map given in this study is more meaningful and general.
|