The Buckling Operator: Inverse Boundary Value Problem

In this paper, we consider a zeroth-order perturbation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow>&...

Full description

Bibliographic Details
Main Author: Yanjun Ma
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/2/268
_version_ 1797439055515877376
author Yanjun Ma
author_facet Yanjun Ma
author_sort Yanjun Ma
collection DOAJ
description In this paper, we consider a zeroth-order perturbation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the buckling operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>Δ</mo><mn>2</mn></msup><mo>−</mo><mi>κ</mi><mo>Δ</mo></mrow></semantics></math></inline-formula>, which can be uniquely determined by measuring the Dirichlet-to-Neumann data on the boundary. We extend the conclusion of the biharmonic operator to the buckling operator, but the Dirichlet-to-Neumann map given in this study is more meaningful and general.
first_indexed 2024-03-09T11:47:17Z
format Article
id doaj.art-3775fd827f5f42848b19d9a99dde94f4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T11:47:17Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-3775fd827f5f42848b19d9a99dde94f42023-11-30T23:19:48ZengMDPI AGMathematics2227-73902023-01-0111226810.3390/math11020268The Buckling Operator: Inverse Boundary Value ProblemYanjun Ma0School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, ChinaIn this paper, we consider a zeroth-order perturbation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> of the buckling operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mo>Δ</mo><mn>2</mn></msup><mo>−</mo><mi>κ</mi><mo>Δ</mo></mrow></semantics></math></inline-formula>, which can be uniquely determined by measuring the Dirichlet-to-Neumann data on the boundary. We extend the conclusion of the biharmonic operator to the buckling operator, but the Dirichlet-to-Neumann map given in this study is more meaningful and general.https://www.mdpi.com/2227-7390/11/2/268Dirichlet-to-Neumann mapbuckling operatoruniqueness
spellingShingle Yanjun Ma
The Buckling Operator: Inverse Boundary Value Problem
Mathematics
Dirichlet-to-Neumann map
buckling operator
uniqueness
title The Buckling Operator: Inverse Boundary Value Problem
title_full The Buckling Operator: Inverse Boundary Value Problem
title_fullStr The Buckling Operator: Inverse Boundary Value Problem
title_full_unstemmed The Buckling Operator: Inverse Boundary Value Problem
title_short The Buckling Operator: Inverse Boundary Value Problem
title_sort buckling operator inverse boundary value problem
topic Dirichlet-to-Neumann map
buckling operator
uniqueness
url https://www.mdpi.com/2227-7390/11/2/268
work_keys_str_mv AT yanjunma thebucklingoperatorinverseboundaryvalueproblem
AT yanjunma bucklingoperatorinverseboundaryvalueproblem