Cloning, characterization, and inhibition of the novel β-carbonic anhydrase from parasitic blood fluke, Schistosoma mansoni
AbstractSchistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 1...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2023-12-01
|
Series: | Journal of Enzyme Inhibition and Medicinal Chemistry |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/14756366.2023.2184299 |
Summary: | AbstractSchistosoma mansoni is an intestinal parasite with one β-class carbonic anhydrase, SmaBCA. We report the sequence enhancing, production, catalytic activity, and inhibition results of the recombinant SmaBCA. It showed significant catalytic activity on CO2 hydration in vitro with kcat 1.38 × 105 s−1 and kcat/Km 2.33 × 107 M−1 s−1. Several sulphonamide inhibitors, from which many are clinically used, showed submicromolar or nanomolar inhibitory effects on SmaBCA. The most efficient inhibitor with a KI of 43.8 nM was 4-(2-amino-pyrimidine-4-yl)-benzenesulfonamide. Other effective inhibitors with KIs in the range of 79.4–95.9 nM were benzolamide, brinzolamide, topiramate, dorzolamide, saccharin, epacadostat, celecoxib, and famotidine. The other tested compounds showed at least micromolar range inhibition against SmaBCA. Our results introduce SmaBCA as a novel target for drug development against schistosomiasis, a highly prevalent parasitic disease. |
---|---|
ISSN: | 1475-6366 1475-6374 |