Optical-Interference Mitigation in Visible Light Communication for Intelligent Transport Systems Applications

Intelligent Transport Systems (ITS) are anticipated to be one of the key technologies for the next decade and their deployment can benefit from the recent developments in the domain of Visible Light Communication (VLC). Light Emitting Diode (LED)-based low-cost VLC is considered in this work to prov...

Full description

Bibliographic Details
Main Authors: Muhammad Irfan, Usman Habib, Fazal Muhammad, Farman Ali, Abdullah S Alwadie, Shakir Ullah, Adam Glowacz, Witold Glowacz
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/19/5064
Description
Summary:Intelligent Transport Systems (ITS) are anticipated to be one of the key technologies for the next decade and their deployment can benefit from the recent developments in the domain of Visible Light Communication (VLC). Light Emitting Diode (LED)-based low-cost VLC is considered in this work to provide a practical approach towards the implementation of an ITS by addressing the major issues of channel noise, free-space optical multipath reflections and interference from light sources. An analytical model is presented for the proposed Multiple-Input–Single-Output (MISO)-based VLC, and simulations are performed to analyze the performance of the system for various transmission distances. Results show that the proposed optimal receiver for 4 × 1 MISO can provide considerable improvement in the bit error rate for the forward error correction (FEC) threshold of 3.8 × 10<sup>−3</sup> in the presence of optical interference, and is suitable to support an ITS with an inter-vehicle transmission approach. The comparison of achieved performance with existing solutions for VLC-based ITS depicts that the proposed framework provides much higher data rates, three times longer transmission distance and improved receiver sensitivity.
ISSN:1996-1073