Advances in Modeling Alzheimer's Disease In Vitro
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss and cognitive impairment, thereby disrupting the performance of daily activities. Numerous therapeutics have shown efficacy in animal AD models but failed in human patients. The key to...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2021-12-01
|
Series: | Advanced NanoBiomed Research |
Subjects: | |
Online Access: | https://doi.org/10.1002/anbr.202100097 |
_version_ | 1797823755645353984 |
---|---|
author | Navatha Shree Sharma Anik Karan Donghee Lee Zheng Yan Jingwei Xie |
author_facet | Navatha Shree Sharma Anik Karan Donghee Lee Zheng Yan Jingwei Xie |
author_sort | Navatha Shree Sharma |
collection | DOAJ |
description | Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss and cognitive impairment, thereby disrupting the performance of daily activities. Numerous therapeutics have shown efficacy in animal AD models but failed in human patients. The key to understanding the etiology of AD lies in the development of effective disease models, which can ideally recapitulate all characteristics of the disease. Over the years, different approaches including in vitro, in vivo, and in silico models are able to resemble certain features of AD. In this review, the significance of different in vitro models including their merits and limitations in modeling AD is discussed, which will give a better perspective on the development of a comprehensive model that can mimic human AD. This starts with a brief introduction to AD and its pathology. Then it mainly focuses on the two‐dimensional, three‐dimensional and microfluidic in vitro models of AD that have made significant advancements in understanding AD pathology and aiding in screening effective therapeutics. Several 3D neural tissue engineering models developed in the last two decades along with a discussion on the future prospects in the development of efficient in vitro AD models are further highlighted. |
first_indexed | 2024-03-13T10:28:38Z |
format | Article |
id | doaj.art-37a357477f0d41b8b6fcec2553585a56 |
institution | Directory Open Access Journal |
issn | 2699-9307 |
language | English |
last_indexed | 2024-03-13T10:28:38Z |
publishDate | 2021-12-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced NanoBiomed Research |
spelling | doaj.art-37a357477f0d41b8b6fcec2553585a562023-05-19T03:06:29ZengWiley-VCHAdvanced NanoBiomed Research2699-93072021-12-01112n/an/a10.1002/anbr.202100097Advances in Modeling Alzheimer's Disease In VitroNavatha Shree Sharma0Anik Karan1Donghee Lee2Zheng Yan3Jingwei Xie4Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USADepartment of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USADepartment of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USADepartment of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USADepartment of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USAAlzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive memory loss and cognitive impairment, thereby disrupting the performance of daily activities. Numerous therapeutics have shown efficacy in animal AD models but failed in human patients. The key to understanding the etiology of AD lies in the development of effective disease models, which can ideally recapitulate all characteristics of the disease. Over the years, different approaches including in vitro, in vivo, and in silico models are able to resemble certain features of AD. In this review, the significance of different in vitro models including their merits and limitations in modeling AD is discussed, which will give a better perspective on the development of a comprehensive model that can mimic human AD. This starts with a brief introduction to AD and its pathology. Then it mainly focuses on the two‐dimensional, three‐dimensional and microfluidic in vitro models of AD that have made significant advancements in understanding AD pathology and aiding in screening effective therapeutics. Several 3D neural tissue engineering models developed in the last two decades along with a discussion on the future prospects in the development of efficient in vitro AD models are further highlighted.https://doi.org/10.1002/anbr.202100097Alzheimer's diseasein vitro modelsmicrofluidicsneurospheroidsorganoidsscaffolds |
spellingShingle | Navatha Shree Sharma Anik Karan Donghee Lee Zheng Yan Jingwei Xie Advances in Modeling Alzheimer's Disease In Vitro Advanced NanoBiomed Research Alzheimer's disease in vitro models microfluidics neurospheroids organoids scaffolds |
title | Advances in Modeling Alzheimer's Disease In Vitro |
title_full | Advances in Modeling Alzheimer's Disease In Vitro |
title_fullStr | Advances in Modeling Alzheimer's Disease In Vitro |
title_full_unstemmed | Advances in Modeling Alzheimer's Disease In Vitro |
title_short | Advances in Modeling Alzheimer's Disease In Vitro |
title_sort | advances in modeling alzheimer s disease in vitro |
topic | Alzheimer's disease in vitro models microfluidics neurospheroids organoids scaffolds |
url | https://doi.org/10.1002/anbr.202100097 |
work_keys_str_mv | AT navathashreesharma advancesinmodelingalzheimersdiseaseinvitro AT anikkaran advancesinmodelingalzheimersdiseaseinvitro AT dongheelee advancesinmodelingalzheimersdiseaseinvitro AT zhengyan advancesinmodelingalzheimersdiseaseinvitro AT jingweixie advancesinmodelingalzheimersdiseaseinvitro |