Maximization of Eigenfrequency Gaps in a Composite Cylindrical Shell Using Genetic Algorithms and Neural Networks

This paper presents a novel method for the maximization of eigenfrequency gaps around external excitation frequencies by stacking sequence optimization in laminated structures. The proposed procedure enables the creation of an array of suggested lamination angles to avoid resonance for each excitati...

Full description

Bibliographic Details
Main Authors: Bartosz Miller, Leonard Ziemiański
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/13/2754
Description
Summary:This paper presents a novel method for the maximization of eigenfrequency gaps around external excitation frequencies by stacking sequence optimization in laminated structures. The proposed procedure enables the creation of an array of suggested lamination angles to avoid resonance for each excitation frequency within the considered range. The proposed optimization algorithm, which involves genetic algorithms, artificial neural networks, and iterative retraining of the networks using data obtained from tentative optimization loops, is accurate, robust, and significantly faster than typical genetic algorithm optimization in which the objective function values are calculated using the finite element method. The combined genetic algorithm−neural network procedure was successfully applied to problems related to the avoidance of vibration resonance, which is a major concern for every structure subjected to periodic external excitations. The presented examples illustrate a combined approach to avoiding resonance through the maximization of a frequency gap around external excitation frequencies complemented by the maximization of the fundamental natural frequency. The necessary changes in natural frequencies are caused only by appropriate changes in the lamination angles. The investigated structures are thin-walled, laminated one- or three-segment shells with different boundary conditions.
ISSN:2076-3417