Gantry Crane Scheduling with Interference Constraints in Railway Container Terminals

Railway container terminals, where gantry cranes are responsible for loading and unloading containers between freight trains and yards, are important hubs of hinterland logistics transportation. Terminal managers confront the challenge in improving the efficiency of their service. As the most expens...

Full description

Bibliographic Details
Main Authors: Peng Guo, Wenming Cheng, Zeqiang Zhang, Min Zhang, Jian Liang
Format: Article
Language:English
Published: Springer 2013-04-01
Series:International Journal of Computational Intelligence Systems
Subjects:
Online Access:https://www.atlantis-press.com/article/25868383.pdf
Description
Summary:Railway container terminals, where gantry cranes are responsible for loading and unloading containers between freight trains and yards, are important hubs of hinterland logistics transportation. Terminal managers confront the challenge in improving the efficiency of their service. As the most expensive equipment in a terminal, the operational performance of gantry cranes is a crucial factor. In this paper, the gantry crane scheduling problem of railway container terminals is investigated. A mixed integer programming model which considers the effect of dwelling position dependent processing times is formulated. In addition, the safety distances, the travel times and the non-crossing requirement of cranes are incorporated in the mathematical model. A novel discrete artificial bee colony algorithm is presented to solve the intractable scheduling problem. Computational experiments are conducted to evaluate the proposed algorithm on some randomly constructed instances based on typical terminal operational data. Experimental results show that the proposed approach can obtain near optimal solutions for the investigated problem in a reasonable computational time.
ISSN:1875-6883