Structural and component optimization of conventional magnetic material Co to synthesis dendritic-like FeCo and rose-like CoNi toward high-performance electromagnetic wave absorption

To promote the electromagnetic (EM) wave absorption property of conventional magnetic material Co, we synthesized dendritic-like FeCo and rose-like CoNi by a hydrothermal process. The morphology, structure and magnetic properties results reveal that dendritic-like FeCo is consisted of leaf-like unit...

Full description

Bibliographic Details
Main Authors: Yanping Wang, Zhenzhen Hui, Gazi Hao, Shaoqing Zhang, Xiang Ke, Haoran Yan
Format: Article
Language:English
Published: Elsevier 2022-07-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785422007256
Description
Summary:To promote the electromagnetic (EM) wave absorption property of conventional magnetic material Co, we synthesized dendritic-like FeCo and rose-like CoNi by a hydrothermal process. The morphology, structure and magnetic properties results reveal that dendritic-like FeCo is consisted of leaf-like unit layers and rose-like CoNi is composed of nano-sheets, and all samples have ferromagnetic behavior. The absorption intensity of dendritic-like FeCo to EM wave can achieve −36.5 dB at 1.0 mm absorber thickness and the effective absorption bandwidth (EAB) of rose-like CoNi is 5.3 GHz at 1.5 mm absorber thickness, which are far better than conventional magnetic material Co. The EM wave absorption mechanisms reveal that favourable impedance matching, multiple reflection and absorption to EM wave in the unique structure promote dendritic-like FeCo and rose-like CoNi show an excellent EM wave absorption capacity at thin absorber thickness. As a result, excellent EM wave absorbing materials can be obtained by optimizing the composition and structure of Co, and this design strategy can also be used to improve the EM wave absorbing properties of other conventional magnetic materials.
ISSN:2238-7854