Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers

Abstract Mode locking, the self‐starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode‐locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated...

Full description

Bibliographic Details
Main Authors: Alessandra Di Gaspare, Valentino Pistore, Elisa Riccardi, Eva A. A. Pogna, Harvey E. Beere, David A. Ritchie, Lianhe Li, Alexander Giles Davies, Edmund H. Linfield, Andrea C. Ferrari, Miriam S. Vitiello
Format: Article
Language:English
Published: Wiley 2023-03-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202206824
_version_ 1797860805019959296
author Alessandra Di Gaspare
Valentino Pistore
Elisa Riccardi
Eva A. A. Pogna
Harvey E. Beere
David A. Ritchie
Lianhe Li
Alexander Giles Davies
Edmund H. Linfield
Andrea C. Ferrari
Miriam S. Vitiello
author_facet Alessandra Di Gaspare
Valentino Pistore
Elisa Riccardi
Eva A. A. Pogna
Harvey E. Beere
David A. Ritchie
Lianhe Li
Alexander Giles Davies
Edmund H. Linfield
Andrea C. Ferrari
Miriam S. Vitiello
author_sort Alessandra Di Gaspare
collection DOAJ
description Abstract Mode locking, the self‐starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode‐locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third‐order χ(3) nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode‐locking in surface‐emitting electrically pumped random quantum cascade lasers at terahertz frequencies. This is achieved by either lithographically patterning a multilayer graphene film to define a surface random pattern of light scatterers, or by coupling on chip a saturable absorber graphene reflector. Intermode beatnote mapping unveils self‐induced phase‐coherence between naturally incoherent random modes. Self‐mixing intermode spectroscopy reveals phase‐locked random modes. This is an important milestone in the physics of disordered systems. It paves the way to the development of a new generation of miniaturized, electrically pumped mode‐locked light sources, ideal for broadband spectroscopy, multicolor speckle‐free imaging applications, and reservoir quantum computing.
first_indexed 2024-04-09T21:52:56Z
format Article
id doaj.art-37c2ccccb0504dafbb0ef69507183020
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-04-09T21:52:56Z
publishDate 2023-03-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-37c2ccccb0504dafbb0ef695071830202023-03-24T12:30:04ZengWileyAdvanced Science2198-38442023-03-01109n/an/a10.1002/advs.202206824Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random LasersAlessandra Di Gaspare0Valentino Pistore1Elisa Riccardi2Eva A. A. Pogna3Harvey E. Beere4David A. Ritchie5Lianhe Li6Alexander Giles Davies7Edmund H. Linfield8Andrea C. Ferrari9Miriam S. Vitiello10NEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyCavendish Laboratory University of Cambridge Cambridge CB3 0HE UKCavendish Laboratory University of Cambridge Cambridge CB3 0HE UKSchool of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UKSchool of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UKSchool of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UKCambridge Graphene Centre University of Cambridge Cambridge CB3 0FA UKNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyAbstract Mode locking, the self‐starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode‐locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third‐order χ(3) nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode‐locking in surface‐emitting electrically pumped random quantum cascade lasers at terahertz frequencies. This is achieved by either lithographically patterning a multilayer graphene film to define a surface random pattern of light scatterers, or by coupling on chip a saturable absorber graphene reflector. Intermode beatnote mapping unveils self‐induced phase‐coherence between naturally incoherent random modes. Self‐mixing intermode spectroscopy reveals phase‐locked random modes. This is an important milestone in the physics of disordered systems. It paves the way to the development of a new generation of miniaturized, electrically pumped mode‐locked light sources, ideal for broadband spectroscopy, multicolor speckle‐free imaging applications, and reservoir quantum computing.https://doi.org/10.1002/advs.202206824graphenerandom lasersterahertz
spellingShingle Alessandra Di Gaspare
Valentino Pistore
Elisa Riccardi
Eva A. A. Pogna
Harvey E. Beere
David A. Ritchie
Lianhe Li
Alexander Giles Davies
Edmund H. Linfield
Andrea C. Ferrari
Miriam S. Vitiello
Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
Advanced Science
graphene
random lasers
terahertz
title Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
title_full Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
title_fullStr Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
title_full_unstemmed Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
title_short Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
title_sort self induced mode locking in electrically pumped far infrared random lasers
topic graphene
random lasers
terahertz
url https://doi.org/10.1002/advs.202206824
work_keys_str_mv AT alessandradigaspare selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT valentinopistore selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT elisariccardi selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT evaaapogna selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT harveyebeere selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT davidaritchie selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT lianheli selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT alexandergilesdavies selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT edmundhlinfield selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT andreacferrari selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers
AT miriamsvitiello selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers