Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers
Abstract Mode locking, the self‐starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode‐locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-03-01
|
Series: | Advanced Science |
Subjects: | |
Online Access: | https://doi.org/10.1002/advs.202206824 |
_version_ | 1797860805019959296 |
---|---|
author | Alessandra Di Gaspare Valentino Pistore Elisa Riccardi Eva A. A. Pogna Harvey E. Beere David A. Ritchie Lianhe Li Alexander Giles Davies Edmund H. Linfield Andrea C. Ferrari Miriam S. Vitiello |
author_facet | Alessandra Di Gaspare Valentino Pistore Elisa Riccardi Eva A. A. Pogna Harvey E. Beere David A. Ritchie Lianhe Li Alexander Giles Davies Edmund H. Linfield Andrea C. Ferrari Miriam S. Vitiello |
author_sort | Alessandra Di Gaspare |
collection | DOAJ |
description | Abstract Mode locking, the self‐starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode‐locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third‐order χ(3) nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode‐locking in surface‐emitting electrically pumped random quantum cascade lasers at terahertz frequencies. This is achieved by either lithographically patterning a multilayer graphene film to define a surface random pattern of light scatterers, or by coupling on chip a saturable absorber graphene reflector. Intermode beatnote mapping unveils self‐induced phase‐coherence between naturally incoherent random modes. Self‐mixing intermode spectroscopy reveals phase‐locked random modes. This is an important milestone in the physics of disordered systems. It paves the way to the development of a new generation of miniaturized, electrically pumped mode‐locked light sources, ideal for broadband spectroscopy, multicolor speckle‐free imaging applications, and reservoir quantum computing. |
first_indexed | 2024-04-09T21:52:56Z |
format | Article |
id | doaj.art-37c2ccccb0504dafbb0ef69507183020 |
institution | Directory Open Access Journal |
issn | 2198-3844 |
language | English |
last_indexed | 2024-04-09T21:52:56Z |
publishDate | 2023-03-01 |
publisher | Wiley |
record_format | Article |
series | Advanced Science |
spelling | doaj.art-37c2ccccb0504dafbb0ef695071830202023-03-24T12:30:04ZengWileyAdvanced Science2198-38442023-03-01109n/an/a10.1002/advs.202206824Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random LasersAlessandra Di Gaspare0Valentino Pistore1Elisa Riccardi2Eva A. A. Pogna3Harvey E. Beere4David A. Ritchie5Lianhe Li6Alexander Giles Davies7Edmund H. Linfield8Andrea C. Ferrari9Miriam S. Vitiello10NEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyCavendish Laboratory University of Cambridge Cambridge CB3 0HE UKCavendish Laboratory University of Cambridge Cambridge CB3 0HE UKSchool of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UKSchool of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UKSchool of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UKCambridge Graphene Centre University of Cambridge Cambridge CB3 0FA UKNEST CNR – Istituto Nanoscienze and Scuola Normale Superiore Piazza San Silvestro 12 Pisa 56127 ItalyAbstract Mode locking, the self‐starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode‐locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third‐order χ(3) nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode‐locking in surface‐emitting electrically pumped random quantum cascade lasers at terahertz frequencies. This is achieved by either lithographically patterning a multilayer graphene film to define a surface random pattern of light scatterers, or by coupling on chip a saturable absorber graphene reflector. Intermode beatnote mapping unveils self‐induced phase‐coherence between naturally incoherent random modes. Self‐mixing intermode spectroscopy reveals phase‐locked random modes. This is an important milestone in the physics of disordered systems. It paves the way to the development of a new generation of miniaturized, electrically pumped mode‐locked light sources, ideal for broadband spectroscopy, multicolor speckle‐free imaging applications, and reservoir quantum computing.https://doi.org/10.1002/advs.202206824graphenerandom lasersterahertz |
spellingShingle | Alessandra Di Gaspare Valentino Pistore Elisa Riccardi Eva A. A. Pogna Harvey E. Beere David A. Ritchie Lianhe Li Alexander Giles Davies Edmund H. Linfield Andrea C. Ferrari Miriam S. Vitiello Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers Advanced Science graphene random lasers terahertz |
title | Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers |
title_full | Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers |
title_fullStr | Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers |
title_full_unstemmed | Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers |
title_short | Self‐Induced Mode‐Locking in Electrically Pumped Far‐Infrared Random Lasers |
title_sort | self induced mode locking in electrically pumped far infrared random lasers |
topic | graphene random lasers terahertz |
url | https://doi.org/10.1002/advs.202206824 |
work_keys_str_mv | AT alessandradigaspare selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT valentinopistore selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT elisariccardi selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT evaaapogna selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT harveyebeere selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT davidaritchie selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT lianheli selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT alexandergilesdavies selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT edmundhlinfield selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT andreacferrari selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers AT miriamsvitiello selfinducedmodelockinginelectricallypumpedfarinfraredrandomlasers |