Critical Current Density in <i>d</i>-Wave Hubbard Superconductors

In this work, the Generalized Hubbard Model on a square lattice is applied to evaluate the electrical current density of high critical temperature <i>d</i>-wave superconductors with a set of Hamiltonian parameters allowing them to reach critical temperatures close to 100 K. The appropria...

Full description

Bibliographic Details
Main Authors: José Samuel Millán, Jorge Millán, Luis A. Pérez, Harold S. Ruiz
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/24/8969
_version_ 1797456510316445696
author José Samuel Millán
Jorge Millán
Luis A. Pérez
Harold S. Ruiz
author_facet José Samuel Millán
Jorge Millán
Luis A. Pérez
Harold S. Ruiz
author_sort José Samuel Millán
collection DOAJ
description In this work, the Generalized Hubbard Model on a square lattice is applied to evaluate the electrical current density of high critical temperature <i>d</i>-wave superconductors with a set of Hamiltonian parameters allowing them to reach critical temperatures close to 100 K. The appropriate set of Hamiltonian parameters permits us to apply our model to real materials, finding a good quantitative fit with important macroscopic superconducting properties such as the critical superconducting temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>) and the critical current density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>J</mi><mi>c</mi></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. We propose that much as in a dispersive medium, in which the velocity of electrons can be estimated by the gradient of the dispersion relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∇</mo><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the electron velocity is proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∇</mo><mi>E</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in the superconducting state (where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow><mo>=</mo><msqrt><mrow><msup><mrow><mrow><mo>(</mo><mrow><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow><mo>−</mo><mi>μ</mi></mrow><mo>)</mo></mrow></mrow><mn>2</mn></msup><mo>+</mo><msup><mo>Δ</mo><mn>2</mn></msup><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></msqrt></mrow></semantics></math></inline-formula> is the dispersion relation of the quasiparticles, and <b><i>k</i></b> is the electron wave vector). This considers the change of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with respect to the chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>) and the formation of pairs that gives rise to an excitation energy gap <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in the electron density of states across the Fermi level. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow><mo>=</mo><mi>μ</mi></mrow></semantics></math></inline-formula> at the Fermi surface (FS), only the term for the energy gap remains, whose magnitude reflects the strength of the pairing interaction. Under these conditions, we have found that the <i>d</i>-wave symmetry of the pairing interaction leads to a maximum critical current density in the vicinity of the antinodal <i>k</i>-space direction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mi>π</mi><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.407236</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>8</mn></msup></mrow></semantics></math></inline-formula> A/cm<sup>2</sup>, with a much greater current density along the nodal direction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mfrac><mi>π</mi><mn>2</mn></mfrac><mo>,</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.214702</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>9</mn></msup></mrow></semantics></math></inline-formula> A/cm<sup>2</sup>. These results allow for the establishment of a maximum limit for the critical current density that could be attained by a <i>d</i>-wave superconductor.
first_indexed 2024-03-09T16:08:51Z
format Article
id doaj.art-37c4ea035f6d4ec2a4906a287f613772
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T16:08:51Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-37c4ea035f6d4ec2a4906a287f6137722023-11-24T16:24:51ZengMDPI AGMaterials1996-19442022-12-011524896910.3390/ma15248969Critical Current Density in <i>d</i>-Wave Hubbard SuperconductorsJosé Samuel Millán0Jorge Millán1Luis A. Pérez2Harold S. Ruiz3Facultad de Ingeniería, Universidad Autónoma del Carmen, Cd. del Carmen C.P. 24180, Campeche, MexicoFacultad de Ingeniería, Universidad Autónoma del Carmen, Cd. del Carmen C.P. 24180, Campeche, MexicoInstituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-360, Ciudad de Mexico C.P. 04510, CDMX, MexicoSchool of Engineering and Space Park Leicester, University of Leicester, University Rd., Leicester LE1 7RH, UKIn this work, the Generalized Hubbard Model on a square lattice is applied to evaluate the electrical current density of high critical temperature <i>d</i>-wave superconductors with a set of Hamiltonian parameters allowing them to reach critical temperatures close to 100 K. The appropriate set of Hamiltonian parameters permits us to apply our model to real materials, finding a good quantitative fit with important macroscopic superconducting properties such as the critical superconducting temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>) and the critical current density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><msub><mi>J</mi><mi>c</mi></msub></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. We propose that much as in a dispersive medium, in which the velocity of electrons can be estimated by the gradient of the dispersion relation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∇</mo><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, the electron velocity is proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∇</mo><mi>E</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in the superconducting state (where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow><mo>=</mo><msqrt><mrow><msup><mrow><mrow><mo>(</mo><mrow><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow><mo>−</mo><mi>μ</mi></mrow><mo>)</mo></mrow></mrow><mn>2</mn></msup><mo>+</mo><msup><mo>Δ</mo><mn>2</mn></msup><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></msqrt></mrow></semantics></math></inline-formula> is the dispersion relation of the quasiparticles, and <b><i>k</i></b> is the electron wave vector). This considers the change of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with respect to the chemical potential (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula>) and the formation of pairs that gives rise to an excitation energy gap <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in the electron density of states across the Fermi level. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ε</mi><mrow><mo>(</mo><mi mathvariant="bold-italic">k</mi><mo>)</mo></mrow><mo>=</mo><mi>μ</mi></mrow></semantics></math></inline-formula> at the Fermi surface (FS), only the term for the energy gap remains, whose magnitude reflects the strength of the pairing interaction. Under these conditions, we have found that the <i>d</i>-wave symmetry of the pairing interaction leads to a maximum critical current density in the vicinity of the antinodal <i>k</i>-space direction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mi>π</mi><mo>,</mo><mn>0</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.407236</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>8</mn></msup></mrow></semantics></math></inline-formula> A/cm<sup>2</sup>, with a much greater current density along the nodal direction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mfrac><mi>π</mi><mn>2</mn></mfrac><mo>,</mo><mfrac><mi>π</mi><mn>2</mn></mfrac></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.214702</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>9</mn></msup></mrow></semantics></math></inline-formula> A/cm<sup>2</sup>. These results allow for the establishment of a maximum limit for the critical current density that could be attained by a <i>d</i>-wave superconductor.https://www.mdpi.com/1996-1944/15/24/8969critical current density<i>d</i>-wave superconductorsHubbard model
spellingShingle José Samuel Millán
Jorge Millán
Luis A. Pérez
Harold S. Ruiz
Critical Current Density in <i>d</i>-Wave Hubbard Superconductors
Materials
critical current density
<i>d</i>-wave superconductors
Hubbard model
title Critical Current Density in <i>d</i>-Wave Hubbard Superconductors
title_full Critical Current Density in <i>d</i>-Wave Hubbard Superconductors
title_fullStr Critical Current Density in <i>d</i>-Wave Hubbard Superconductors
title_full_unstemmed Critical Current Density in <i>d</i>-Wave Hubbard Superconductors
title_short Critical Current Density in <i>d</i>-Wave Hubbard Superconductors
title_sort critical current density in i d i wave hubbard superconductors
topic critical current density
<i>d</i>-wave superconductors
Hubbard model
url https://www.mdpi.com/1996-1944/15/24/8969
work_keys_str_mv AT josesamuelmillan criticalcurrentdensityinidiwavehubbardsuperconductors
AT jorgemillan criticalcurrentdensityinidiwavehubbardsuperconductors
AT luisaperez criticalcurrentdensityinidiwavehubbardsuperconductors
AT haroldsruiz criticalcurrentdensityinidiwavehubbardsuperconductors