Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields

<p>Open-path Fourier transform infrared spectroscopy (OP-FTIR) has often been used to measure hazardous or trace gases from hot point sources (e.g. volcano, industrial, or agricultural facilities) but seldom used to measure greenhouse gases (GHGs) from field-scale sources (e.g. agricultural so...

Full description

Bibliographic Details
Main Authors: C.-H. Lin, R. H. Grant, A. J. Heber, C. T. Johnston
Format: Article
Language:English
Published: Copernicus Publications 2019-06-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/3403/2019/amt-12-3403-2019.pdf
_version_ 1831644490671063040
author C.-H. Lin
R. H. Grant
A. J. Heber
C. T. Johnston
C. T. Johnston
author_facet C.-H. Lin
R. H. Grant
A. J. Heber
C. T. Johnston
C. T. Johnston
author_sort C.-H. Lin
collection DOAJ
description <p>Open-path Fourier transform infrared spectroscopy (OP-FTIR) has often been used to measure hazardous or trace gases from hot point sources (e.g. volcano, industrial, or agricultural facilities) but seldom used to measure greenhouse gases (GHGs) from field-scale sources (e.g. agricultural soils). Closed-path mid-IR laser-based <span class="inline-formula">N<sub>2</sub>O</span>, nondispersive-IR <span class="inline-formula">CO<sub>2</sub></span> analysers, and OP-FTIR were used to measure concentrations of <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> at a maize cropping system during 9–19 June 2014. To measure <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> concentrations accurately, we developed a quantitative method of <span class="inline-formula">N<sub>2</sub>O∕CO<sub>2</sub></span> analysis that minimized interferences from diurnal changes of humidity and temperature. Two chemometric multivariate models, classical least squares (CLS) and partial least squares (PLS), were developed. This study evaluated various methods to generate the single-beam background spectra and different spectral regions for determining <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> concentrations from OP-FTIR spectra. A standard extractive method was used to measure the actual path-averaged concentrations along an OP-FTIR optical path in situ, as a benchmark to assess the feasibilities of these quantitative methods. Within an absolute humidity range of 5000–20&thinsp;000&thinsp;ppmv and a temperature range of 10–35&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, we found that the CLS model underestimated <span class="inline-formula">N<sub>2</sub>O</span> concentrations (bias&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mo>-</mo><mn mathvariant="normal">4.9</mn><mo>±</mo><mn mathvariant="normal">3.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1199c60d5da8ecf5da7795e506317b9d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-3403-2019-ie00001.svg" width="62pt" height="10pt" src="amt-12-3403-2019-ie00001.png"/></svg:svg></span></span>&thinsp;%) calculated from OP-FTIR spectra, and the PLS model improved the accuracy of calculated <span class="inline-formula">N<sub>2</sub>O</span> concentrations (bias&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mn mathvariant="normal">1.4</mn><mo>±</mo><mn mathvariant="normal">2.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4cf55b45aaf6347f81021eebb53ce659"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-3403-2019-ie00002.svg" width="54pt" height="10pt" src="amt-12-3403-2019-ie00002.png"/></svg:svg></span></span>&thinsp;%). The bias of calculated <span class="inline-formula">CO<sub>2</sub></span> concentrations was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.0</mn><mo>±</mo><mn mathvariant="normal">2.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="80143b66c290d40986e3425df7c2a702"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-3403-2019-ie00003.svg" width="52pt" height="10pt" src="amt-12-3403-2019-ie00003.png"/></svg:svg></span></span>&thinsp;% using the CLS model. These methods suggested that environmental variables potentially lead to biases in <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> estimations from OP-FTIR spectra and may help OP-FTIR users avoid dependency on extractive methods of calibrations.</p>
first_indexed 2024-12-19T13:18:47Z
format Article
id doaj.art-37c7130bdc7b49f5818f7768c69dda2e
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-19T13:18:47Z
publishDate 2019-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-37c7130bdc7b49f5818f7768c69dda2e2022-12-21T20:19:45ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-06-01123403341510.5194/amt-12-3403-2019Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fieldsC.-H. Lin0R. H. Grant1A. J. Heber2C. T. Johnston3C. T. Johnston4Department of Agronomy, Purdue University, West Lafayette, IN 47907, USADepartment of Agronomy, Purdue University, West Lafayette, IN 47907, USADepartment of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USADepartment of Agronomy, Purdue University, West Lafayette, IN 47907, USADepartment of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA<p>Open-path Fourier transform infrared spectroscopy (OP-FTIR) has often been used to measure hazardous or trace gases from hot point sources (e.g. volcano, industrial, or agricultural facilities) but seldom used to measure greenhouse gases (GHGs) from field-scale sources (e.g. agricultural soils). Closed-path mid-IR laser-based <span class="inline-formula">N<sub>2</sub>O</span>, nondispersive-IR <span class="inline-formula">CO<sub>2</sub></span> analysers, and OP-FTIR were used to measure concentrations of <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> at a maize cropping system during 9–19 June 2014. To measure <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> concentrations accurately, we developed a quantitative method of <span class="inline-formula">N<sub>2</sub>O∕CO<sub>2</sub></span> analysis that minimized interferences from diurnal changes of humidity and temperature. Two chemometric multivariate models, classical least squares (CLS) and partial least squares (PLS), were developed. This study evaluated various methods to generate the single-beam background spectra and different spectral regions for determining <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> concentrations from OP-FTIR spectra. A standard extractive method was used to measure the actual path-averaged concentrations along an OP-FTIR optical path in situ, as a benchmark to assess the feasibilities of these quantitative methods. Within an absolute humidity range of 5000–20&thinsp;000&thinsp;ppmv and a temperature range of 10–35&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, we found that the CLS model underestimated <span class="inline-formula">N<sub>2</sub>O</span> concentrations (bias&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mo>-</mo><mn mathvariant="normal">4.9</mn><mo>±</mo><mn mathvariant="normal">3.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1199c60d5da8ecf5da7795e506317b9d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-3403-2019-ie00001.svg" width="62pt" height="10pt" src="amt-12-3403-2019-ie00001.png"/></svg:svg></span></span>&thinsp;%) calculated from OP-FTIR spectra, and the PLS model improved the accuracy of calculated <span class="inline-formula">N<sub>2</sub>O</span> concentrations (bias&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>=</mo><mn mathvariant="normal">1.4</mn><mo>±</mo><mn mathvariant="normal">2.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="4cf55b45aaf6347f81021eebb53ce659"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-3403-2019-ie00002.svg" width="54pt" height="10pt" src="amt-12-3403-2019-ie00002.png"/></svg:svg></span></span>&thinsp;%). The bias of calculated <span class="inline-formula">CO<sub>2</sub></span> concentrations was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.0</mn><mo>±</mo><mn mathvariant="normal">2.8</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="80143b66c290d40986e3425df7c2a702"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-3403-2019-ie00003.svg" width="52pt" height="10pt" src="amt-12-3403-2019-ie00003.png"/></svg:svg></span></span>&thinsp;% using the CLS model. These methods suggested that environmental variables potentially lead to biases in <span class="inline-formula">N<sub>2</sub>O</span> and <span class="inline-formula">CO<sub>2</sub></span> estimations from OP-FTIR spectra and may help OP-FTIR users avoid dependency on extractive methods of calibrations.</p>https://www.atmos-meas-tech.net/12/3403/2019/amt-12-3403-2019.pdf
spellingShingle C.-H. Lin
R. H. Grant
A. J. Heber
C. T. Johnston
C. T. Johnston
Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
Atmospheric Measurement Techniques
title Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
title_full Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
title_fullStr Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
title_full_unstemmed Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
title_short Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
title_sort application of open path fourier transform infrared spectroscopy op ftir to measure greenhouse gas concentrations from agricultural fields
url https://www.atmos-meas-tech.net/12/3403/2019/amt-12-3403-2019.pdf
work_keys_str_mv AT chlin applicationofopenpathfouriertransforminfraredspectroscopyopftirtomeasuregreenhousegasconcentrationsfromagriculturalfields
AT rhgrant applicationofopenpathfouriertransforminfraredspectroscopyopftirtomeasuregreenhousegasconcentrationsfromagriculturalfields
AT ajheber applicationofopenpathfouriertransforminfraredspectroscopyopftirtomeasuregreenhousegasconcentrationsfromagriculturalfields
AT ctjohnston applicationofopenpathfouriertransforminfraredspectroscopyopftirtomeasuregreenhousegasconcentrationsfromagriculturalfields
AT ctjohnston applicationofopenpathfouriertransforminfraredspectroscopyopftirtomeasuregreenhousegasconcentrationsfromagriculturalfields