Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment
Titanium-based implant abutments and tissue bars are polished during the finalization. We hypothesized that polishing degrades the bioactivity of titanium, and, if this is the case, photofunctionalization-grade UV treatment can alleviate the adverse effect. Three groups of titanium disks were prepar...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/18/3946 |
_version_ | 1797554401249853440 |
---|---|
author | Takahisa Okubo Takayuki Ikeda Juri Saruta Naoki Tsukimura Makoto Hirota Takahiro Ogawa |
author_facet | Takahisa Okubo Takayuki Ikeda Juri Saruta Naoki Tsukimura Makoto Hirota Takahiro Ogawa |
author_sort | Takahisa Okubo |
collection | DOAJ |
description | Titanium-based implant abutments and tissue bars are polished during the finalization. We hypothesized that polishing degrades the bioactivity of titanium, and, if this is the case, photofunctionalization-grade UV treatment can alleviate the adverse effect. Three groups of titanium disks were prepared; machined surface, polished surface and polished surface followed by UV treatment (polished/UV surface). Polishing was performed by the sequential use of greenstone and silicon rubber burs. UV treatment was performed using a UV device for 12 min. Hydrophobicity/hydrophilicity was examined by the contact angle of ddH<sub>2</sub>O. The surface morphology and chemistry of titanium were examined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Human epithelium cells were seeded on titanium disks. The number of cells attached, the spreading behavior of cells and the retention on titanium surfaces were examined. The polished surfaces were smooth with only minor scratches, while the machined surfaces showed traces and metal flashes made by machine-turning. The polished surfaces showed a significantly increased percentage of surface carbon compared to machined surfaces. The carbon percentage on polished/UV surfaces was even lower than that on machined surfaces. A silicon element was detected on polished surfaces but not on polished/UV surfaces. Both machined and polished surfaces were hydrophobic, whereas polished/UV surfaces were hydrophilic. The number of attached cells after 24 h of incubation was 60% lower on polished surfaces than on machined surfaces. The number of attached cells on polished/UV surfaces was even higher than that on machined surfaces. The size and perimeter of cells, which was significantly reduced on polished surfaces, were fully restored on polished/UV surfaces. The number of cells remained adherent after mechanical detachment was reduced to half on polished surfaces compared to machined surfaces. The number of adherent cells on polished/UV surfaces was two times higher than on machined surfaces. In conclusion, polishing titanium causes chemical contamination, while smoothing its surface significantly compromised the attachment and retention of human epithelial cells. The UV treatment of polished titanium surfaces reversed these adverse effects and even outperformed the inherent bioactivity of the original titanium. |
first_indexed | 2024-03-10T16:31:38Z |
format | Article |
id | doaj.art-37d5f379101242af8419e9b42240bfeb |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T16:31:38Z |
publishDate | 2020-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-37d5f379101242af8419e9b42240bfeb2023-11-20T12:47:25ZengMDPI AGMaterials1996-19442020-09-011318394610.3390/ma13183946Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV TreatmentTakahisa Okubo0Takayuki Ikeda1Juri Saruta2Naoki Tsukimura3Makoto Hirota4Takahiro Ogawa5Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90090-1668, USAWeintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90090-1668, USAWeintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90090-1668, USAWeintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90090-1668, USAWeintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90090-1668, USAWeintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90090-1668, USATitanium-based implant abutments and tissue bars are polished during the finalization. We hypothesized that polishing degrades the bioactivity of titanium, and, if this is the case, photofunctionalization-grade UV treatment can alleviate the adverse effect. Three groups of titanium disks were prepared; machined surface, polished surface and polished surface followed by UV treatment (polished/UV surface). Polishing was performed by the sequential use of greenstone and silicon rubber burs. UV treatment was performed using a UV device for 12 min. Hydrophobicity/hydrophilicity was examined by the contact angle of ddH<sub>2</sub>O. The surface morphology and chemistry of titanium were examined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Human epithelium cells were seeded on titanium disks. The number of cells attached, the spreading behavior of cells and the retention on titanium surfaces were examined. The polished surfaces were smooth with only minor scratches, while the machined surfaces showed traces and metal flashes made by machine-turning. The polished surfaces showed a significantly increased percentage of surface carbon compared to machined surfaces. The carbon percentage on polished/UV surfaces was even lower than that on machined surfaces. A silicon element was detected on polished surfaces but not on polished/UV surfaces. Both machined and polished surfaces were hydrophobic, whereas polished/UV surfaces were hydrophilic. The number of attached cells after 24 h of incubation was 60% lower on polished surfaces than on machined surfaces. The number of attached cells on polished/UV surfaces was even higher than that on machined surfaces. The size and perimeter of cells, which was significantly reduced on polished surfaces, were fully restored on polished/UV surfaces. The number of cells remained adherent after mechanical detachment was reduced to half on polished surfaces compared to machined surfaces. The number of adherent cells on polished/UV surfaces was two times higher than on machined surfaces. In conclusion, polishing titanium causes chemical contamination, while smoothing its surface significantly compromised the attachment and retention of human epithelial cells. The UV treatment of polished titanium surfaces reversed these adverse effects and even outperformed the inherent bioactivity of the original titanium.https://www.mdpi.com/1996-1944/13/18/3946attachmenthuman oral epithelial cellUV treatmentimplantpolishedtitanium |
spellingShingle | Takahisa Okubo Takayuki Ikeda Juri Saruta Naoki Tsukimura Makoto Hirota Takahiro Ogawa Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment Materials attachment human oral epithelial cell UV treatment implant polished titanium |
title | Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment |
title_full | Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment |
title_fullStr | Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment |
title_full_unstemmed | Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment |
title_short | Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment |
title_sort | compromised epithelial cell attachment after polishing titanium surface and its restoration by uv treatment |
topic | attachment human oral epithelial cell UV treatment implant polished titanium |
url | https://www.mdpi.com/1996-1944/13/18/3946 |
work_keys_str_mv | AT takahisaokubo compromisedepithelialcellattachmentafterpolishingtitaniumsurfaceanditsrestorationbyuvtreatment AT takayukiikeda compromisedepithelialcellattachmentafterpolishingtitaniumsurfaceanditsrestorationbyuvtreatment AT jurisaruta compromisedepithelialcellattachmentafterpolishingtitaniumsurfaceanditsrestorationbyuvtreatment AT naokitsukimura compromisedepithelialcellattachmentafterpolishingtitaniumsurfaceanditsrestorationbyuvtreatment AT makotohirota compromisedepithelialcellattachmentafterpolishingtitaniumsurfaceanditsrestorationbyuvtreatment AT takahiroogawa compromisedepithelialcellattachmentafterpolishingtitaniumsurfaceanditsrestorationbyuvtreatment |